

CLOVER DISPLAY LTD.

LCD MODULE SPECIFICATION

Model: CV320240G - _ _ - _ - _ - _

Revision	01
Engineering	Ben Au
Date	02 November 2022
Our Reference	4947

ADDRESS: 1st FLOOR, EFFICIENCY HOUSE, 35 TAI YAU STREET, SAN PO KONG,

KOWLOON, HONG KONG.

TEL : (852) 2341 3238 (SALES OFFICE) (852) 2342 8228 (GENERAL OFFICE)

FAX : (852) 2357 4237 (SALES OFFICE)

E-MAIL: cdl@cloverdisplay.com

URL: http://www.cloverdisplay.com

MODE OF DISPLAY

Display mode STN: Yellow green Grey	☐ Refle	condition ective type sflective type	Viewing direction ☐ 6 O' clock ☐ 12 O' clock
☐ Blue (negative) ☐ FSTN positive ☐ FSTN negative		smissive type	☐ 3 O' clock ☐ 9 O' clock
LCD MODULE NUMBER NOT	TATION:		
LCD MODULE NUMBER NOT CV320240G- MY - S F - N (1) (2)(3) (4) (5) (6)	$\frac{6}{1} - \frac{T}{1}$	*(2)Backlight ty N - E - L - M - C - *(3)Backlight c *(3)Backlight c N - A - B - O - W - Y - *(4)Display mo T - V - S - G - B - F - N - *(5)Rear polariz R - F - T - *(6)Temperatur N - W - *(7)Viewing dir 6 - 2 - 3 - 9 - *(8)Special cod	- No backlight - EL backlight - Side-lited LED backlight - Array LED backlight - CCFL olor - No backlight - Amber - Blue Orange - White - Yellow green de - TN - TN (Negative) - STN Yellow green - STN Grey - STN Blue (Negative) - FSTN - FSTN (Negative) zer type - Reflective - Transflective - Transmissive re range - Normal - Extended rection 6 O'clock 12 O'clock 9 O'clock 9 O'clock e for other requirements
		T -	itted if not used) Touch panel (Analog) Touch panel (Digital)

SPEC. REV.01 PAGE 1 OF 19

GENERAL DESCRIPTION

Display mode : 320 x 240 dots, graphic COF LCD module

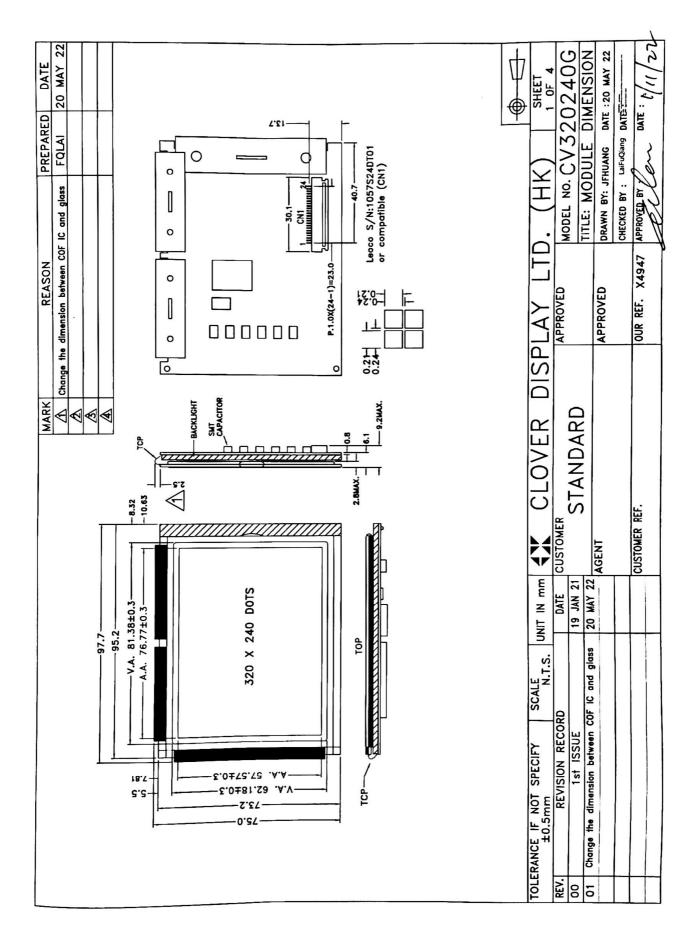
Interface : 4-bit or 8-bit parallel

Driving method : 1/240 duty, 1/15 bias

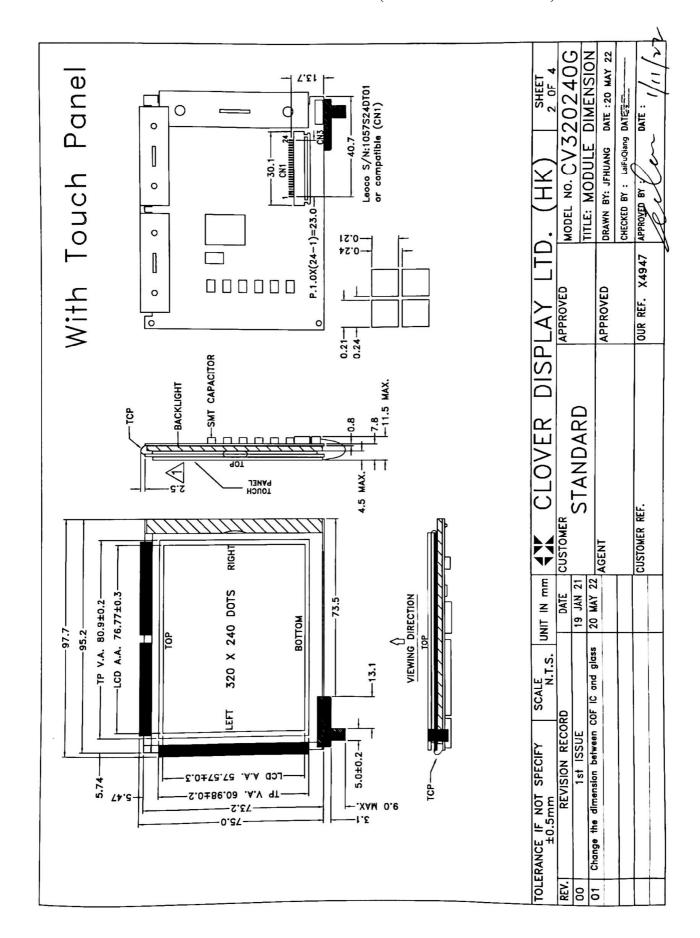
Backlight : Side-lited LED / White / Blue
Controller IC : RAIO RA8806A or equivalence

For the detailed information, please refer to the IC specifications.

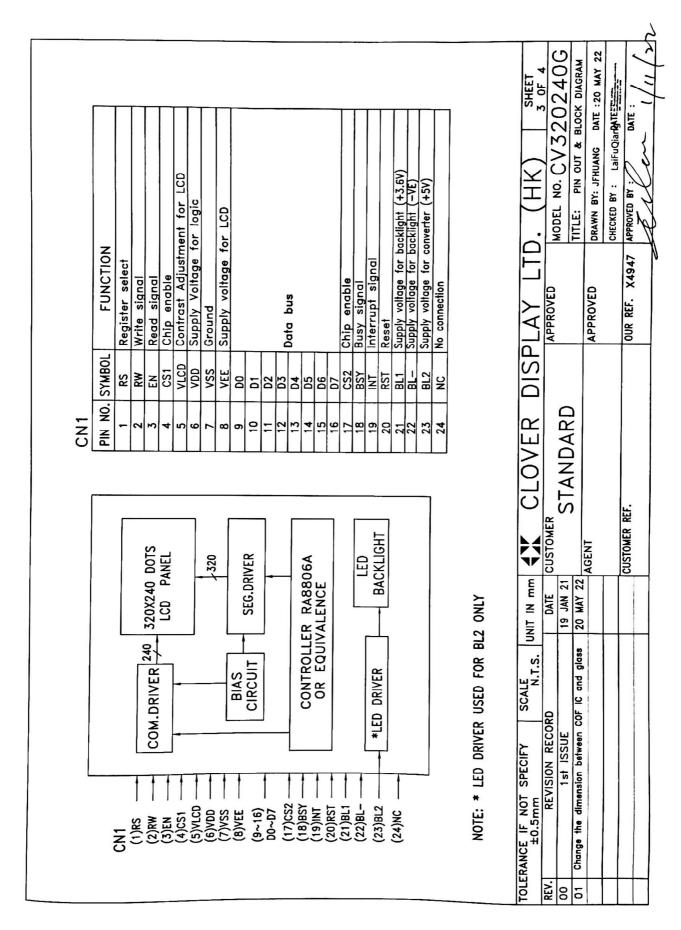
MECHANICAL DIMENSIONS


Item	Dimension	Unit	Item	Dimension	Unit
	97.7(L)x75(W)x9.2(MAX.)(H)	mm		81.38(L)x62.18(W)	mm
Outline Dimension	97.7(L)x75(W)x11.5(MAX.)(H) (with touch panel)	mm	Viewing Area	80.9(L)x60.98(W) (with touch panel)	mm
Dot Pitch	0.24(L)x0.24(W)	mm	Dot Size	0.21(L)x0.21(W)	mm

CONNECTOR PIN ASSIGNMENT (CN1)


Pin No.	Symbol	Function				
1	RS	Register select				
2	WR(R/W)	Write signal (read and write for 6800 mode)				
3	RD(E)	Read signal (input enable for 6800 mode)				
4	CS1	Chip enable				
5	V0	LCD contrast adjustment				
6	VDD	Supply voltage for logic				
7	VSS	Ground				
8	VEE	Power supply for LCD				
9	D0					
10	D1					
11	D2					
12	D3	D. J.				
13	D4	Data bus				
14	D5					
15	D6					
16	D7					
17	CS2	Chip enable				
18	BSY	Busy signal				
19	INT	Interrupt signal				
20	RST	Reset				
21	BL1	Supply voltage for backlight (+3.6V)				
22	BL-	Supply voltage for backlight (-VE)				
23	BL2	Supply voltage for converter (+5V)				
24	NC	No connection				

SPEC. REV.01 PAGE 2 OF 19


COUNTER DRAWING OF MODULE DIMENSION

COUNTER DRAWING OF MODULE DIMENSION(WITH TOUCH PANEL)

COUNTER DRAWING OF PIN OUT & BLOCK DIAGRAM

Conditions: VSS=0V, Ta=25°C

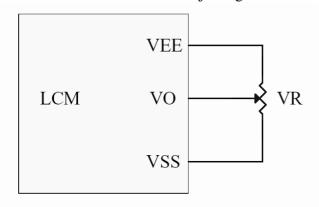
ELECTRICAL CHARACTERISTICS

Item	Symbol	MIN.	TYP.	MAX.	Unit	Item	Symbol	MIN.	TYP.	MAX.	Unit
For supply voltage = 5V											
Supply Voltage for Logic	VDD	4.75	5.0	5.25	V	Power supply for LCD	VEE	25.0		30.0	V
Supply Current for Logic	IDD	1	5	10	mA	'H''Level Input Voltage VI		0.8VDD	_	VDD	V
Contrast adjustment for LCD	V0	23.8	24.0	24.2	V	"L"Level Input Voltage	VIL	VSS		0.2VDD	V
For supply voltage =3.3V											
Supply Voltage for Logic	VDD	3.05	3.3	3.55	V	Power supply for LCD	VEE	25.0	_	30.0	V
Supply Current for Logic	IDD	1	5	10	mA	"H"Level Input Voltage	Vih	0.8VDD	_	VDD	V
Contrast adjustment for LCD	V0	23.8	24.0	24.2	V	"L"Level Input Voltage	VIL	VSS	_	0.2VDD	V

Side Backlight

Constant voltage driving:

Item	Symbol	MIN.	TYP.	MAX.	Unit	Condition
White Backlight current	IBL	Î	102	108	mA	$V_{BL} = 3.6V$
Blue Backlight current	IBL	Î	102	108	mA	V _{BL} = 3.6V


ABSOLUTE MAXIMUM RATINGS

Please make sure not to exceed the following maximum rating values under the worst application conditions.

Tieuse mane sure not to em	occu ane reme wa	S manning varies under the weist approaches	Conditions.
Item	Symbol Rating (for normal temperature)		
Supply Voltage for Logic	VDD	-0.3 to 6.5	V
Input Voltage for Logic	VIN	-0.3 to VDD+0.3	V
Operating Temperature	Topr	-20 to 70	°C
Storage Temperature	Tstg	-30 to 80	°C

APPLICATION EXAMPLE

A variable resistor is used to adjusting the contrast of the LCD.

Recommend: $VR > 50K\Omega$.

SPEC. REV.01 PAGE 6 OF 19

Application note:

(for detail refer to controller specification)

FOR RA8806							
	VDD=5V VDD=3.3V						
L1	0.47uH	OPEN					
L2	0.47uH	0.47uH					
L3	OPEN	0.47uH					
L4	OPEN	OPEN					
JP1	short 1-2	short 1-2					

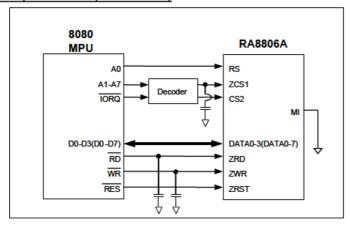


图 6-1:8080 (4/8-位) MPU 接口

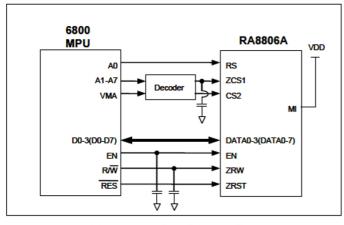


图 6-2:6800 (4/8-位) MPU 接口

Stabilization enhancing cap: 50pF

CYCLE LIST TABLE

CYC_NAME	RS	ZWR	Description			
CMD	1	0	Command write cycle, for writting register number(REG#)			
STATUS	1	1	Status read cycle, using to check Interrupt or Sleep status.			
DATW	0	0	Data write cycle, using to write register data or memory data.			
DATR	0	1	Data read cycle, using to read register data or memory data.			

SPEC. REV.01 PAGE 7 OF 19

REGISTER LIST TABLE

D0h

D1h

E0h

F0h

F1h

PCR

PDCR

PNTR

FNCR

FVHT

PWM_EN

PDUTY7

PND7

ISO8859_E

Ν

FH1

PWM_DIS_

LEV

PDUTY6

PND6

FH0

PDUTY5

PND5

FV1

REG#	Name	D7	D6	D5	D4	D3	D2	D1	D0	初始值
	STATUS	MBUSY	SBUSY	SLEEP			WAKE_ST S	KS_STS	TP_STS	
00h	WLCR	PWR	LINEAR	SRST		TEXT_MD	ZDOFF	GBLK	GINV	00h
01h	MISC	NO_ FLICKER	CLKO_SEL	BUSY_ LEV	INT_LEV	XCK_SEL1	XCK_SEL0	SDIR	CDIR	04h
03h	ADSR	SCR_PEN D				BIT_INV	SCR_DIR	SCR_HV	SCR_EN	00h
0Fh	INTR		WAKI_EN	KEYI_EN	TPI_EN	TP_ACT	WAK_STS	KEY_STS	TP_STS	00h
10h	WCCR	CUR_INC	FULL_OFS	BIT_REV	BOLD	T90DEG	CUR_EN	CUR_BLK		00h
11h	CHWI	CURH3	CURH2	CURH1	CURH0	ROWH3	ROWH 2	ROWH 1	ROWH 0	00h
12h	MAMR	CUR_HV	DISPMD2	DISPMD1	DISPMD0	L_MIX1	L_MIX 0	MW_MD1	MW_MD0	11h
20h	AWRR			AWR5	AWR4	AWR3	AWR2	AWR1	AWR0	27h
21h	DWWR			DWW5	DWW 4	DWW 3	DWW 2	DWW 1	DWW 0	27h
30h	AWBR	AWB7	AWB6	AWB5	AWB4	AWB3	AWB2	AWB1	AWB0	EFh
31h	DWHR	DWH7	DWH6	DWH5	DWH4	DWH3	DWH2	DWH1	DWH0	EFh
40h	AWLR	1		AWL5	AWL4	AWL3	AWL2	AWL1	AWL0	00h
50h	AWTR	AWT7	AWT6	AWT5	AWT4	AWT3	AWT2	AWT1	AWT0	00h
60h	CURX			CURX5	CURX4	CURX3	CURX2	CURX1	CURX0	00h
61h	BGSG			BGSG5	BGSG4	BGSG3	BGSG2	BGSG1	BGSG0	00h
62h	EDSG	EDSG7	EDSG6	EDSG5	EDSG4	EDSG3	EDSG2	EDSG1	EDSG0	00h
70h	CURY	CURY7	CURY6	CURY5	CURY4	CURY3	CURY2	CURY1	CURY0	00h
71h	BGCM	BGCM7	BGCM6	BGCM5	BGCM4	BGCM3	BGCM2	BGCM1	BGCM0	00h
72h	EDCM	EDCM7	EDCM6	EDCM5	EDCM4	EDCM3	EDCM2	EDCM1	EDCM0	00h
80h	BTMR	BLKT7	BLKT6	BLKT5	BLKT4	BLKT3	BLKT2	BLKT1	BLKT0	00h
90h	ITCR	ITC7	ITC6	ITC5	ITC4	ITC3	ITC2	ITC1	ITC0	00h
A0h	KSCR1	KEY_EN	KEY4X8	KSAMP1	KSAMP0	LKEY_EN	KF2	KF1	KF0	00h
A1h	KSCR2	KWAK_EN				LKEY_T1	LKEY_T0	KEYNO1	KEYNO0	00h
A2h	KSDR0	KSD07	KSD06	KSD05	KSD04	KSD03	KSD02	KSD01	KSD00	00h
A3h	KSDR1	KSD17	KSD16	KSD15	KSD14	KSD13	KSD12	KSD11	KSD10	00h
A4h	KSDR2	KSD27	KSD26	KSD25	KSD24	KSD23	KSD22	KSD21	KSD20	00h
B0h	MWCR	MWD7	MWD6	MWD5	MWD4	MWD3	MWD2	MWD1	MWD0	
B1h	MRCR	MRD7	MRD6	MRD5	MRD4	MRD3	MRD2	MRD1	MRD0	
	(OOIIII								•	
REG#	Name	D7	D6	D5	D4	D3	D2	D1	D0	初始值
C0h	TPCR1	TP_EN	TP_SMP2	TP_SMP1	TP_SMP0	TPWAK _EN	ACLK2	ACLK1	ACLK0	00h
C1h	TPXR	TPX9	TPX8	TPX7	TPX6	TPX5	TPX4	TPX3	TPX2	00h
C2h	TPYR	TPY9	TPY8	TPY7	TPY6	TPY5	TPY4	TPY3	TPY2	00h
C3h	TPZR	TPX1	TPX0			TPY1	TPY0			00h
C4h	TPCR2	MTP_MD						MTP_PH1	MTP_PH2	00h
	 		1		 	 			_	

SPEC. REV.01 PAGE 8 OF 19

PDUTY4

PND4

FV0

PCLK_R3

PDUTY3

PND3

MCLR

PCLK_R2

PDUTY2

PND2

ASC

PCLK_R1

PDUTY1

PND1

ASC_SEL1 | ASC_SEL0

PCLK_R0

PDUTY0

PND0

00h

00h

00h

00h

00h

A.C. CHARACTERISTICS

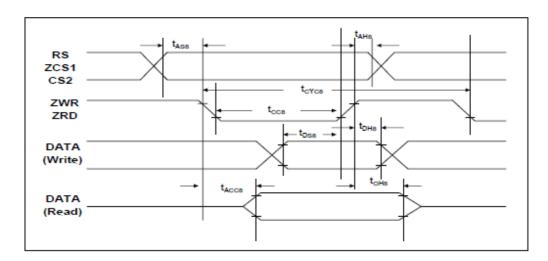


Figure 6-3: 8080 MPU Interface Waveform

Table 6-1: 8080 MPU Interface Timing

Symbol	Description	Rat	ing	Unit	Condition
Symbol	Description	Min.	Max.	Oiiit	Condition
t _{CYC8}	Cycle time	2*tc		ns	tc = one system clock period
t _{CC8}	Strobe Pulse width	50		ns	
t _{AS8}	Address setup time	0		ns	
t _{AH8}	Address hold time	20		ns	
t _{DS8}	Data setup time	30		ns	
t _{DH8}	Data hold time	20		ns	
t _{ACC8}	Data output access time	0	20	ns	
t _{OH8}	Data output hold time	0	10	ns	

SPEC. REV.01 PAGE 9 OF 19

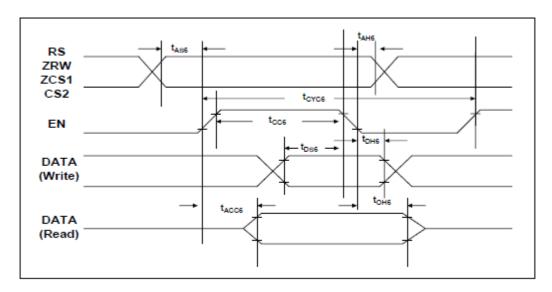


Figure 6-4: 6800 MPU Interface Waveform

Table 6-2: 6800 MPU Interface Timing

Symbol	Description	Rat	ting	Unit	Condition
Symbol	Description	Min.	Max.	Oiiit	Condition
t _{CYC8}	Cycle time	2*tc		ns	tc is one system clock period:
t _{CC6}	Strobe Pulse width	50		ns	tc=1/CLK
t _{AS6}	Address setup time	0		ns	
t _{AH6}	Address hold time	20		ns	
t _{DS6}	Data setup time	30		ns	
t _{DH6}	Data hold time	20		ns	
t _{ACC8}	Data output access time	0	20	ns	
t _{OH6}	Data output hold time	0	10	ns	

SPEC. REV.01 PAGE 10 OF 19

COMMAND WRITE

6-1-2 Command Write

According to the Table 5-1, RA8806 accept 4 cycles through MPU interface. If users want to write command to RA8806, then a Command cycle has to execute first, and then execute a Data Write cycle. The "Command Write" means write function data to register. After these two cycles, the Data will write into the indicative Register. Please see the following Figure 6-5 (1).

In Table 6-1 of Section 6-1-1, each command of RA8806 is take 2 cycles, and the minimum cycle time is 2*tc. So totally the minimum time of command write need 4*tc. See following Table 6-3.

If the secondary cycle is a "Data Read", then user could read the register content. See the following Figure 6-5 (2). Note the Figure 6-5 to Figure 6-7 are use the 8080 MPU interface as examples.

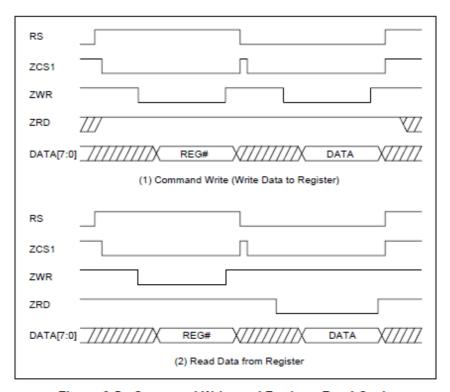


Figure 6-5: Command Write and Register Read Cycle

System Clock	Command Access Time
4MHz	1µs
6 MHz	667ns
8 MHz	500ns
10 MHz	400ns
12 MHz	333ns

Table 6-3: Command Access Time Table

SPEC. REV.01 PAGE 11 OF 19

Memory Write/Read

6-1-3 Memory Write/Read

When users want to write data to memory – DDRAM or CGRAM, then a special Command cycle has to execute first, the register have to assign to "B0h" on Data Bus. Then the following Data Write cycle will write data into memory. If users want to read data from memory, then the register has to assign to "B1h" on Data Bus in Command Write cycle. Please see the following Figure 6-6 (1) and (2).

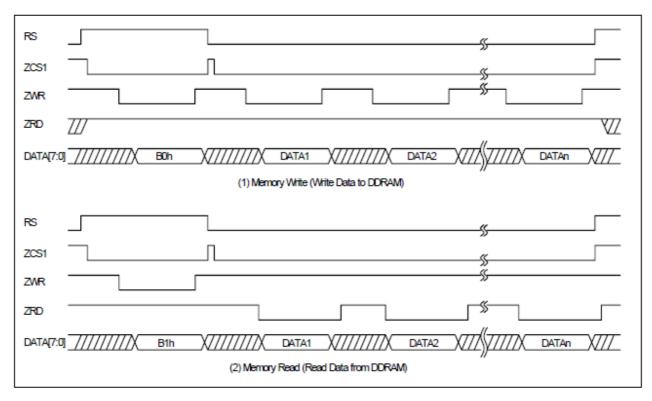


Figure 6-6: Memory Write/Read Cycle

6-1-4 Status Read

RA8806 provides a dedicate Status Read cycle to help users know the status of RA8806. Please refer to following Figure 6-7 and the beginning of Section 5-2 "Register Description".

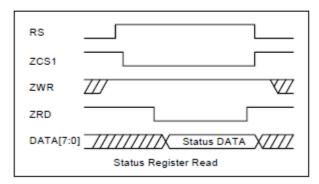


Figure 6-7: Status Read Cycle

SPEC. REV.01 PAGE 12 OF 19

Reset

6-6-3 Reset

The RA8806 requires a reset pulse at least 1024*tc long after power-on in order to re-initialize its internal state. If the oscillator frequency is 6Mhz, then the Reset pulse is at least 170.7µs. For maximum reliability, it is not recommended to apply a DC voltage to the LCD panel while the RA8806 is reset. Turn off the LCD power supplies for at least one frame period after the start of the reset pulse.

Figure 6-27 is an example for ZRST application circuit. It could be controlled by MPU such as (1) of Figure 6-27. Or, generated by a RC circuit such as (2) of Figure 6-27.

The RA8806 cannot receive commands while it is reset. Commands to initialize the internal registers should be issued soon after a reset. During reset, the LCD drive signals XD, LP and FR are halted. A delay of 1ms (minimum) is required following the rising edges of both ZRST and VDD to allow for system stabilization. Please refer to Figure 6-28 for more detail description.

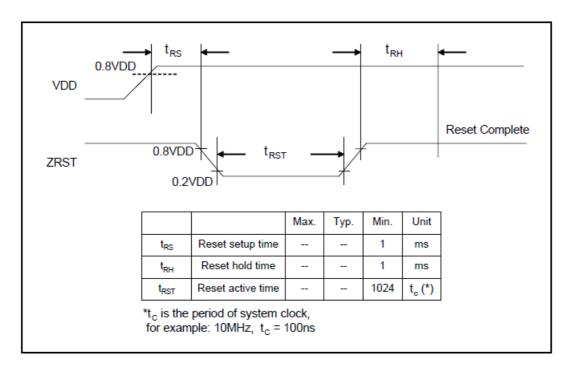


Figure 6-28: Reset Timing

Interrupt and Busy:

Refer to controller specification for detail.

SPEC. REV.01 PAGE 13 OF 19

DISPLAY DATA RAM

The RA8806 support maximum resolution is 320x240 pixels, therefore it need 9.6Kbyte(320x240/8=9600)Display Data RAM(DDRAM) to store each pixel data. Figure 6-42 is an example to show the DDRAM data mapping to the LCD panel.

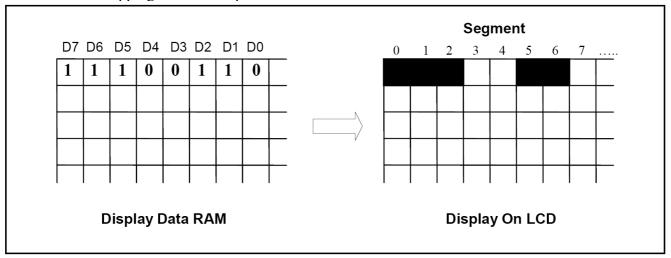


Figure 6-42: The Mapping of Display Data to LCD Panel

表 6-5: 常用 LCD 模块之显示	·爾[コ设定
---------------------	-----	-----

Panel Resolution	Segment	Common	REG[21h] DWWR	REG[31h] DWHR
160*80	160	80	13h	4Fh
160*128	160	128	13h	7Fh
160*160	160	160	13h	9Fh
240*64	240	64	1Dh	3Fh
240*128	240	128	1Dh	7Fh
240*160	240	160	1Dh	9Fh
320*240	320	240	27h	EFh

SPEC. REV.01 PAGE 14 OF 19

ELECTRO-OPTICAL CHARACTERISTICS

MEASURING CONDITION: POWER SUPPLY = Vop / 64 Hz TEMPERATURE = 22 ± 5 °C

RELATIVE HUMIDITY = $60 \pm 15 \%$

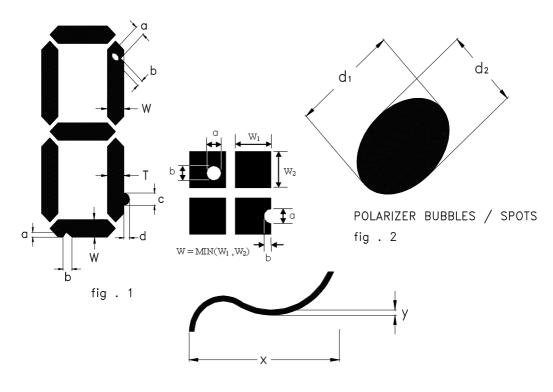
ITEM	SYMBOL	UNIT	TYP. STN
RESPONSE TIME	Ton	ms	370
	Toff	ms	470
CONTRAST RATIO	Cr	-	7
	V3:00	٥	40
VIEWING ANGLE	V6:00	٥	50
(Cr ≥ 2)	V9:00	0	40
	V12:00	0	30

THE ELECTRO-OPTICAL CHARACTERISTICS ARE MEASURED VALUE BUT NOT GUARANTEED ONES.

RELIABILITY OF LCD MODULE

	TEST CONDITION	TEST CONDITION	
ITEM	FOR NORMAL TEMPERATURE	FOR WIDE TEMPERATURE	TIME
High temperature operating	50°C	70°C	240 hours
Low temperature operating	0°C	-20°C	240 hours
High temperature storage	60°C	80°C	240 hours
Low temperature storage	-10°C	-30°C	240 hours
Temperature-humidity storage	40°C 90% R.H.	60°C 90% R.H.	96 hours
Temperature cycling	-10°C to 60°C	-30°C to 80°C	5 avala
	30 Min Dwell	30 Min Dwell	5 cycle
Vibration Test at LCM Level	Freq 10-55 Hz	Freq 10-55 Hz	
	Sweep rate: 10-55-10 at 1 min	Sweep rate: 10-55-10 at 1 min	
	Sweep mode Linear	Sweep mode Linear	_
	Displacement: 2 mm p-p	Displacement: 2 mm p-p	
	1 Hour each for X, Y, Z	1 Hour each for X, Y, Z	

SPEC. REV.01 PAGE 15 OF 19

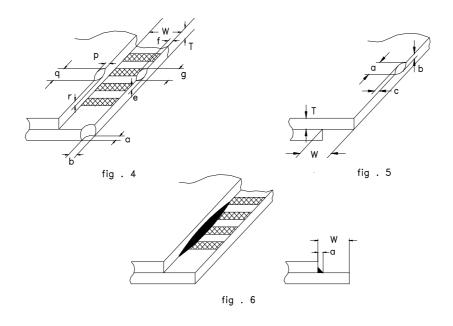

QUALITY STANDARD

DEFECT	CRITER	IA	TYPE	FIGURE
SHORT CIRCUIT		-	MAJOR	-
MISSING SEGMENT		-	MAJOR	-
UNEVEN / POOR CONTRAST		-	MAJOR	-
CROSS TALK		-	MAJOR	-
PIN HOLE	MAX(a,b) ≤	1 / 4 W	MINOR	1
	DOT MATRIX:			
	IF $0.6 \le W$,	MAX(a,b) < 0.3 N.A.**		
	IF $0.4 \le W < 0.6$, 1	MAX(a,b) < 0.25 N.A.**		
	IF $W < 0.4$,	MAX(a,b) < 0.2 N.A.**		
EXCESS SEGMENT	$MAX(c,d) \leq 1/4T$		MINOR	1
BUBBLES	$d^* \ge 0.3$	QTY=0	MINOR	2
SPOTS	d ≤ 0.3	N.A.**	MINOR	2
	0.3 <d≤0.4< td=""><td>QTY≤2</td><td></td><td></td></d≤0.4<>	QTY≤2		
	0.4 <d< td=""><td>QTY=0</td><td></td><td></td></d<>	QTY=0		
LINE SCRATCHES	x≥0.7 y≥0.05	QTY=0	MINOR	3
BLACK LINE	x≥0.7 y≥0.05	QTY=0	MINOR	3

^{*} $d = MAX(d_1,d_2)$

** N. A . = NOT APPLICABLE

LINE SCRATCHES / BLACK LINE fig . 3


SPEC. REV.01 PAGE 16 OF 19

QUALITY STANDARD (CONT .)

DEFECT		CRITERIA	ТҮРЕ	FIGURE
	CONTACT EDGE	e≤1/2T f≤1/3W g≤4.0		4
CHIPS	BOTTOM GLASS	p≤1.5 q≤3.5 r≤1/2T	MINOR	4
	CORNER	a≤2.0 b≤W		4
	TOP GLASS	a≤3.5 b≤1/2T c≤1/3W		5
GLASS PROTRUSION		$a \le 1/4 \text{ W}$	MINOR	6
RAINBOW		-	MINOR	-

UNLESS STATE OTHERWISE, ALL UNIT ARE IN MILLIMETER.

DEFECT TABLE : C

SPEC. REV.01 PAGE 17 OF 19

CLOVER DISPLAY LTD.

QUALITY STANDARD OF LCD MODULE

1.0	Sampling Method						
	Sampling Plan : ANSI/ASQ Z1.4						
	Class of AQL : Level II/Single Sampling						
		or 0.65% Minor 1.5%					
2.0	Defect Group Failure Category		Failure Reasons				
	Critical Defect	Malfunction	Open				
	0.25%(AQL)		Short				
			Burnt or dead component				
			Missing part/improper part P.C.B.				
			Broken				
	Major Defect	Poor Insulation	Potential short				
	0.65%(AQL)		High current				
			Component damage or scratched				
			or Lying too close improper coating				
		Poor Conduction	Damage joint				
			Wrong polarity				
			Wrong spec. part				
			Uneven/intermittent contact				
			Loose part				
			Copper peeling				
			Rust or corrosion or dirt's				
	Minor Defect	Cosmetic Defect	Minor scratch				
	1.5%(AQL)		Flux residue				
			Thin solder				
			Poor plating				
			Poor marking				
			Crack solder				
			Poor bending				
			Poor packing				
			Wrong size				

SPEC. REV.01 PAGE 18 OF 19

HANDLING PRECAUTIONS

(1) CAUTION OF LCD HANDLING & CLEANING

The polarizing plate on the surface of the panel is made from organic substances. Be very careful for chemicals not to touch the plate or it leads the polarizing plate to deteriorate.

If the use of a chemical is unavoidable, wipe the panel lightly with soft materials, such as gauze and absorbent cotton, soaked in a solvent.

*Usable solvent: Alcohol (ethanol, IPA and the like)

Avoid wiping with a dry cloth, since it could damage the surface of the polarizing plate and others.

(2) CAUTION AGAINST STATIC CHARGE

The LCD modules use CMOS LSI drivers, so customers are recommended that any unused input terminal would be connected to V_{DD} or V_{SS} , do not input any signals before power is turned on, and ground your body, work/assembly areas, assembly equipment to protect against static electricity.

(3) PACKAGING

Avoid intense shock and falls from a height and do not operate or store them exposed to direct sunshine or high temperature/humidity for long periods.

(4) CAUTION FOR OPERATION

The viewing angle can be adjusted by varying the LCD driving voltage VLCD.

Driving voltage should be kept within specified range, excess voltage shortens display life.

Response time increases with decrease in temperature.

Display may turn black or dark Blue at temperature above its operational range; this is however not destructive and the display will return to normal once the temperature falls back to range.

Mechanical disturbance during operation (such as pressing on the viewing area) may cause the segments to appear "fractured". They will recover once the display is turned off.

Condensation at terminals will cause malfunction and possible electrochemical reaction. Relative humidity of the environment should therefore be kept below 60%.

(5) SAFETY

Liquid crystal may leak out of a damaged LCD, it is recommended to wash off the liquid crystal by using solvents such as acetone or ethanol and should be burned up later.

If any liquid leaks out of a damaged glass cell comes in contact with your hands, wash it off with soap and water immediately.

WARRANTY

CLOVER will replace or repair any of her LCD module in accordance with her LCD specification for a period of one year from date of shipment. The warranty liability of Clover is limited to repair and/or replacement. Clover will not be responsible for any subsequent or consequential event.

SPEC. REV.01 PAGE 19 OF 19

^{*}Appropriate solvent: Ketones, ethyl alcohol

SPECIFICATION REVISION RECORD

Revision No.	Description	Date(DD/MM/YY)
00	1 st Issue	17/03/21
01	Update Counter Drawing to 01 on page 3-5	02/11/22

SPEC. REV.01 PAGE 20 OF 19