

# **CLOVER DISPLAY LTD.**

# LCD MODULE SPECIFICATION

Model: CG12832B - \_ \_ - \_ - \_ -

| Revision      | 00           |
|---------------|--------------|
| Engineering   | Timothy Chan |
| Date          | 05 JUL 2021  |
| Our Reference | X9067K       |

ADDRESS: 1st FLOOR, EFFICIENCY HOUSE, 35 TAI YAU STREET, SAN PO KONG,

KOWLOON, HONG KONG.

TEL : (852) 2341 3238 (SALES OFFICE) (852) 2342 8228 (GENERAL OFFICE)

FAX : (852) 2357 4237 (SALES OFFICE)

E-MAIL: cdl@cloverdisplay.com

URL : <a href="http://www.cloverdisplay.com">http://www.cloverdisplay.com</a>

(Can be omitted if not used)

T – Touch panel (Analog)

P – Touch panel (Digital)

#### **MODE OF DISPLAY**

Display mode **Display condition** Viewing direction STN: Yellow green Reflective type 6 O' clock Grey Transflective type ☐ 12 O' clock Blue (negative) Transmissive type 3 O' clock ☐ FSTN positive Others 9 O' clock FSTN negative LCD MODULE NUMBER NOTATION: CG12832B- N N - S R - N 6 - T \*(1)---Model number of standard LCD Modules \*(2)---Backlight type (1) (2) (3) (4) (5) (6) (7) (8) N – No backlight E – EL backlight L – Side-lited LED backlight M- Array LED backlight C - CCFL\*(3)---Backlight color N – No backlight A - AmberB - BlueO- Orange W-White Y – Yellow green \*(4)---Display mode T-TNV – TN (Negative) S – STN Yellow green G - STN Grey B – STN Blue (Negative) F - FSTNN – FSTN (Negative) \*(5)---Rear polarizer type R – Reflective F – Transflective T – Transmissive \*(6)---Temperature range N - NormalW-Extended \*(7)---Viewing direction 6-6 O'clock 2 – 12 O'clock 3 - 3 O'clock 9 – 9 O'clock

SPEC. REV.00 PAGE 1 OF 18

\*(8)---Special code for other requirements (Can be omitted if not used)

## **GENERAL DESCRIPTION**

Display mode : 128 X 32 dots, Graphic COG LCD module

: FSTN / Negative / Reflective

Interface : I2C

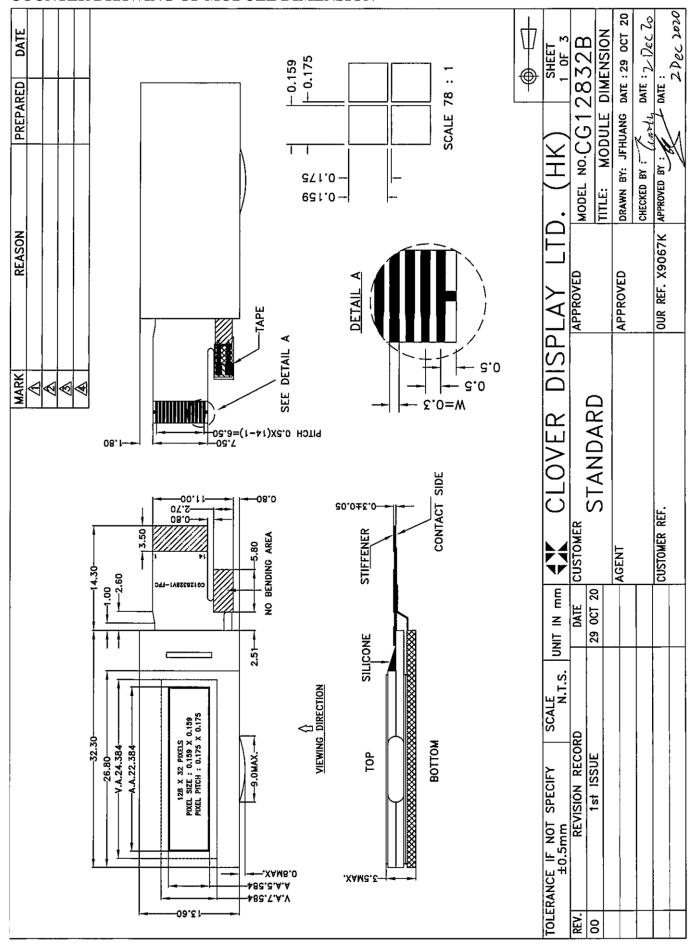
Driving method : 1/32 duty, 1/7 bias

Controller IC : Sitronix ST7539i-G4 or equivalent

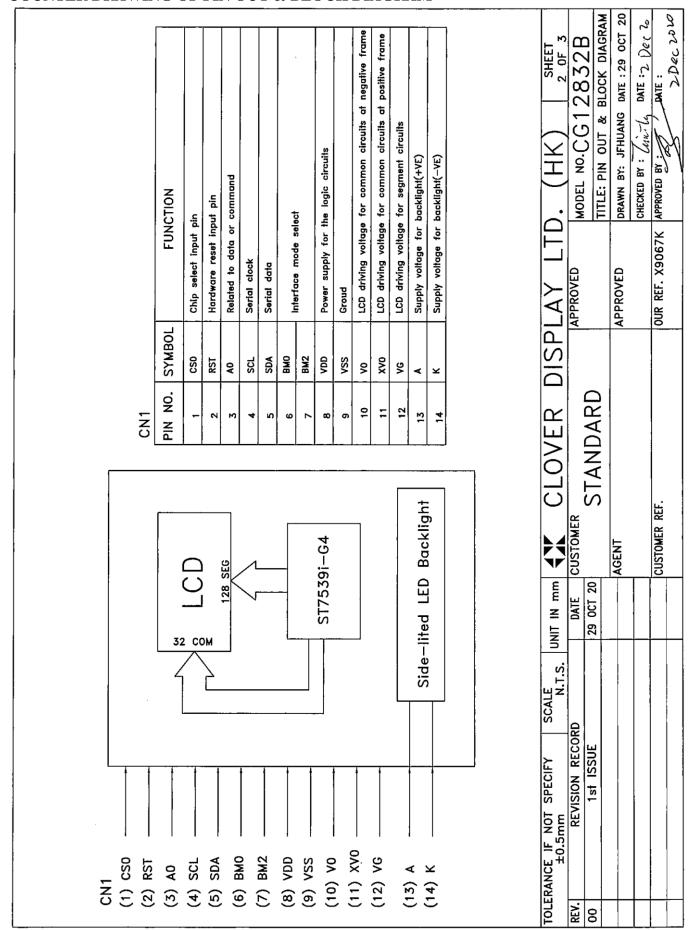
For the detailed information, please refer to the IC specifications.

## **MECHANICAL DIMENSIONS**

| Item              | Dimension               | Unit | Item      | Dimension         | Unit |
|-------------------|-------------------------|------|-----------|-------------------|------|
| Outline Dimension | 32.3(L)x13.6(W)x2.1 (H) | mm   | Dot Pitch | 0.175(L)x0.175(W) | mm   |
| Viewing Area      | 24.384(L)x7.584(W)      | mm   | Dot Size  | 0.159(L)x0.159(W) | mm   |
| Active Area       | 22.384(L)x5.584(W)      | mm   |           |                   |      |


# **CONNECTOR PIN ASSIGNMENT**

| Pin No. | Symbol | Function                                                  |  |
|---------|--------|-----------------------------------------------------------|--|
| 1       | CS0    | Chip select input pin                                     |  |
| 2       | RST    | Hardware reset input pin                                  |  |
| 3       | A0     | Related to data or command                                |  |
| 4       | SCL    | Serial clock                                              |  |
| 5       | SDA    | Serial data                                               |  |
| 6       | BM0    | Interface mode select                                     |  |
| 7       | BM2    | Interface mode select                                     |  |
| 8       | VDD    | Power supply for the logic circuits                       |  |
| 9       | VSS    | Groud                                                     |  |
| 10      | V0     | LCD driving voltage for common circuits at negative frame |  |
| 11      | XV0    | LCD driving voltage for common circuits at positive frame |  |
| 12      | VG     | LCD driving voltage for segment circuits                  |  |
| * 13    | A      | Supply Voltage for Backlight (+VE)                        |  |
| * 14    | K      | Supply Voltage for Backlight (-VE)                        |  |


Note (\*) : Pin 13, 14 are used for backlight version

SPEC. REV.00 PAGE 2 OF 18

## COUNTER DRAWING OF MODULE DIMENSION



# COUNTER DRAWING OF PIN OUT & BLOCK DIAGRAM



#### **ELECTRICAL CHARACTERISTICS**

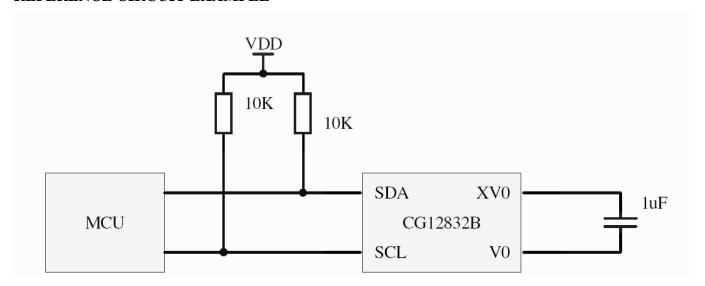
| Conditions: | VSS=0V. | Ta=25°C |
|-------------|---------|---------|
|             |         |         |

| Item                       | Symbol | MIN.   | TYP. | MAX.   | Unit |
|----------------------------|--------|--------|------|--------|------|
| Supply Voltage for Logic   | VDD    | 3.05   | 3.3  | 3.55   | V    |
| Supply Current for Logic   | IDD    | _      | 0.18 | 0.27   | mA   |
| Operating Voltage for LCD  | VLCD   | _      | 8    |        | V    |
| 'High' Level Input Voltage | VIH    | 0.8VDD | _    | _      | V    |
| 'Low' Level Input Voltage  | VIL    | _      | _    | 0.2VDD | V    |

Note (\*): There is tolerance in optimum LCD driving voltage during production and it will be within the specified range.

#### Side BL:

Constant voltage driving:


| Item              | Symbol            | MIN. | TYP. | MAX. | Unit | Condition       |
|-------------------|-------------------|------|------|------|------|-----------------|
| Backlight current | $I_{\mathrm{BL}}$ | _    | 13   | 20   | mA   | $V_{BL} = 3.3V$ |

## **ABSOLUTE MAXIMUM RATINGS**

Please make sure not to exceed the following maximum rating values under the worst application conditions

| Item                  | Symbol | Rating (for normal temperature) | Rating (for wide temperature) | Unit                   |
|-----------------------|--------|---------------------------------|-------------------------------|------------------------|
| Supply Voltage        | VDD    | -0.3 to 4.0                     | -0.3 to 4.0                   | V                      |
| Input Voltage         | Vi     | -0.3 to VDD+0.3                 | -0.3 to VDD+0.3               | V                      |
| Operating Temperature | Topr   | -20 to 70                       | -40 to 90                     | $^{\circ}\!\mathbb{C}$ |
| Storage Temperature   | Tstg   | -30 to 80                       | -50 to 100                    | $^{\circ}\!\mathbb{C}$ |

#### REFERENCE CIRCUIT EXAMPLE



SPEC. REV.00 PAGE 5 OF 18

# INSTRUCTIONS TABLE

|                            | COMMAND TABLE |       |     |     |      |       |        |       |       |       |                                                                                         |
|----------------------------|---------------|-------|-----|-----|------|-------|--------|-------|-------|-------|-----------------------------------------------------------------------------------------|
| INCTRUCTION                |               | R/W   |     |     | С    | OMMA  | ND BYT | Έ     |       |       | DECODIDATION                                                                            |
| INSTRUCTION                | A0            | (RWR) | D7  | D6  | D5   | D4    | D3     | D2    | D1    | D0    | DESCRIPTION                                                                             |
| Write Data                 | 1             | 0     | D7  | D6  | D5   | D4    | D3     | D2    | D1    | D0    | Write data to DDRAM                                                                     |
| Read Data                  | 1             | 1     | D7  | D6  | D5   | D4    | D3     | D2    | D1    | D0    | Read data from DDRAM<br>Only for parallel interface<br>and I <sup>2</sup> C             |
| Read Status Byte           | 0             | 1     | ID0 | MX  | MY   | WA    | DE     | 0     | 0     | 0     | Read status byte                                                                        |
| (parallel interface)       | 0             | '     | 0   | POR | 0    | 0     | 0      | ID3   | ID2   | ID1   | Only for parallel interface                                                             |
| Read Status Byte           | 0             | 0     | 1   | 1   | 1    | 1     | 1      | 1     | 1     | 0     | Read status byte                                                                        |
| (4-SPI)                    | 0             | 1     | ID0 | MX  | MY   | WA    | DE     | 0     | 0     | 0     | Only for 4 line SPI                                                                     |
| <u> </u>                   |               | _ '   | 0   | POR | 0    | 0     | 0      | ID3   | ID2   | ID1   | ,                                                                                       |
| Set Column Address<br>LSB  | 0             | 0     | 0   | 0   | 0    | 0     | CA3    | CA2   | CA1   | CA0   | Set column address of RAM                                                               |
| Set Column Address<br>MSB  | 0             | 0     | 0   | 0   | 0    | 1     | CA7    | CA6   | CA5   | CA4   | Set column address of KAIW                                                              |
| Set Scroll Line            | 0             | 0     | 0   | 1   | SL5  | SL4   | SL3    | SL2   | SL1   | SL0   | Specify line address for the 1 <sup>st</sup> display line of DDRAM (vertical scrolling) |
| Set Page Address           | 0             | 0     | 1   | 0   | 1    | 1     | PA3    | PA2   | PA1   | PA0   | Set page address of RAM                                                                 |
| Cat Cauturat               |               | _     | 1   | 0   | 0    | 0     | 0      | 0     | 0     | 1     | 2-byte instruction. Set Vop                                                             |
| Set Contrast               | 0             | 0     | EV7 | EV6 | EV5  | EV4   | EV3    | EV2   | EV1   | EV0   | voltage                                                                                 |
| Set Partial Screen<br>Mode | 0             | 0     | 1   | 0   | 0    | 0     | 0      | 1     | 0     | PS    | PS=1: Enable partial mode                                                               |
| Set RAM Address<br>Control | 0             | 0     | 1   | 0   | 0    | 0     | 1      | AC2   | AC1   | AC0   | Set column and page address behavior                                                    |
| Set Frame Rate             | 0             | 0     | 1   | 0   | 1    | 0     | 0      | 0     | FR1   | FR0   | Set frame frequency                                                                     |
| Set All Pixel ON           | 0             | 0     | 1   | 0   | 1    | 0     | 0      | 1     | 0     | AP    | Set all display segments on                                                             |
| Set Inverse Display        | 0             | 0     | 1   | 0   | 1    | 0     | 0      | 1     | 1     | INV   | Set inverse display                                                                     |
| Set Display Enable         | 0             | 0     | 1   | 0   | 1    | 0     | 1      | 1     | 1     | PD    | PD=0: Chip is in power down mode                                                        |
| Scan Direction             | 0             | 0     | 1   | 1   | 0    | 0     | 0      | MY    | MX    | 0     | Set COM and SEG scan direction                                                          |
| Software Reset             | 0             | 0     | 1   | 1   | 1    | 0     | 0      | 0     | 1     | 0     | Set software reset                                                                      |
| NOP                        | 0             | 0     | 1   | 1   | 1    | 0     | 0      | 0     | 1     | 1     | No operation                                                                            |
| Set Bias                   | 0             | 0     | 1   | 1   | 1    | 0     | 1      | 0     | BR1   | BR0   | Set internal bias circuit                                                               |
|                            |               |       | 1   | 1   | 1    | 1     | 0      | 0     | 0     | 1     | 2-byte instruction. Set                                                                 |
| Set COM End                | 0             | 0     |     |     | CEN5 | CEN4  | CEN3   | CEN2  | CEN1  | CENO  | display duty                                                                            |
|                            |               |       | 1   | 1   | 1    | 1     | 0      | 0     | 1     | 0     | Set partial start for partial                                                           |
| Partial Start Address      | 0             | 0     |     |     | DST5 | DST 4 | DST 3  | DST 2 | DST 1 | DST 0 | display screen                                                                          |
|                            |               |       | 1   | 1   | 1    | 1     | 0      | 0     | 1     | 1     | Set partial end for partial                                                             |
| Partial End Address        | 0             | 0     |     |     | DEN5 | DEN4  | DEN3   | DEN2  | DEN1  | DENO  | display screen                                                                          |
|                            |               |       | 1   | 1   | 1    | 1     | 1      | 1     | 1     | 1     | Set test command table                                                                  |
| Test Control               | 0             | 0     |     |     |      |       |        |       | H1    | НО    |                                                                                         |

Note: 1. Do not use instructions not listed in these tables (Command Table).

SPEC. REV.00 PAGE 6 OF 18

<sup>2. &</sup>quot;--" = Disabled bit. It can be either logic 0 or 1.

## RECOMMENDED INITIAL SETTINGS

Set Page Address: B0H

Set Column Address: 10H,00H

Set Scan Direction:C2H

Set RAM Address Control:88H

Set LCD Bias Select:E9H

Set LCD Duty Select: F1H,1FH

Set Scroll Line:40H Set Frame Rate:A0H

Set Electronic volume register:81H,A0H

Set Display On : AFH

SPEC. REV.00 PAGE 7 OF 18

# DISPLAY DATA RAM

When accessing to RAM, sixteen addressing mode are provided:

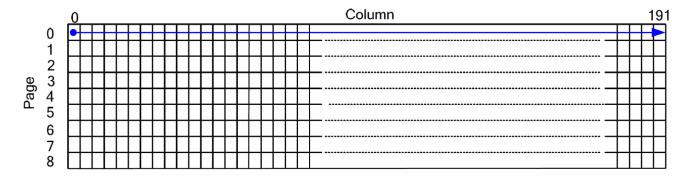



Fig 12. DDRAM Access Mapping (MX=0, AC[2:0]=0, PA[3:0]=0, CA[3:0]=0)

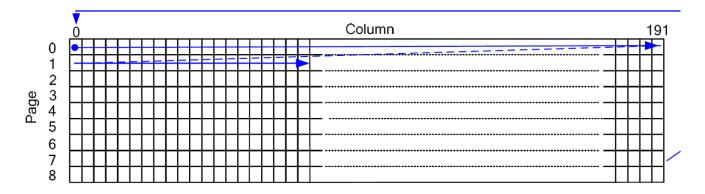



Fig 13. DDRAM Access Mapping (MX=0, AC[2:0]=1, PA[3:0]=0, CA[3:0]=0)

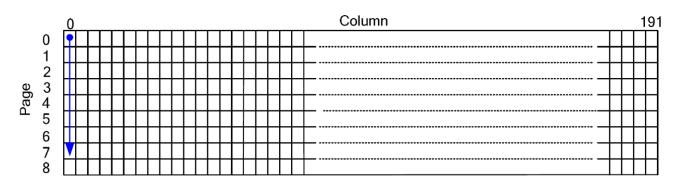



Fig 14. DDRAM Access Mapping (MX=0, AC[2:0]=2, PA[3:0]=0, CA[3:0]=0)

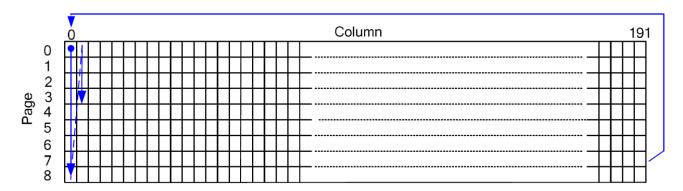



Fig 15. DDRAM Access Mapping (MX=0, AC[2:0]=3, PA[3:0]=0, CA[3:0]=0)

SPEC. REV.00 PAGE 8 OF 18

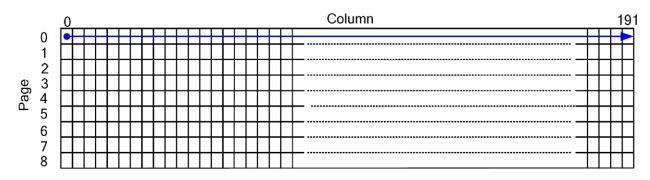



Fig 16. DDRAM Access Mapping (MX=0, AC[2:0]=4, PA[3:0]=0, CA[3:0]=0)

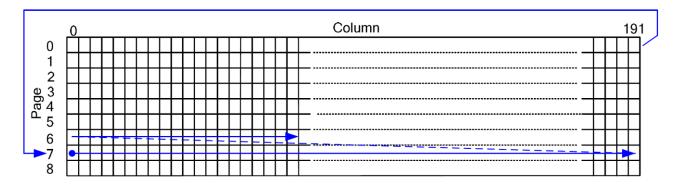



Fig 17. DDRAM Access Mapping (MX=0, AC[2:0]=5, PA[3:0]=7, CA[3:0]=0)

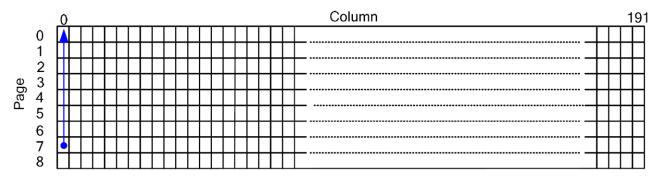



Fig 18. DDRAM Access Mapping (MX=0, AC[2:0]=6, PA[3:0]=7, CA[3:0]=0)

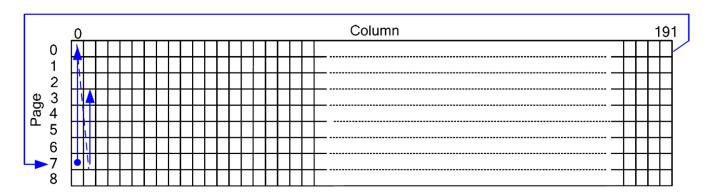



Fig 19. DDRAM Access Mapping (MX=0, AC[2:0]=7, PA[3:0]=7, CA[3:0]=0)

SPEC. REV.00 PAGE 9 OF 18

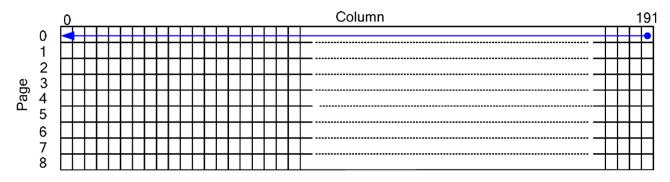



Fig 20. DDRAM Access Mapping (MX=1, AC[2:0]=0, PA[3:0]=0, CA[3:0]=0)

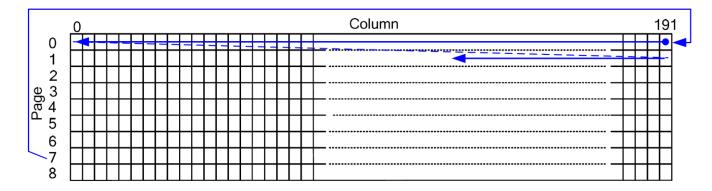



Fig 21. DDRAM Access Mapping (MX=1, AC[2:0]=1, PA[3:0]=0, CA[3:0]=0)

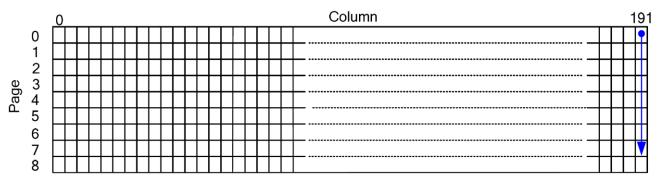



Fig 22. DDRAM Access Mapping (MX=1, AC[2:0]=2, PA[3:0]=0, CA[3:0]=0)

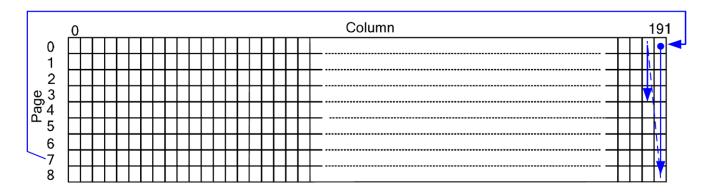



Fig 23. DDRAM Access Mapping (MX=1, AC[2:0]=3, PA[3:0]=0, CA[3:0]=0)

SPEC. REV.00 PAGE 10 OF 18

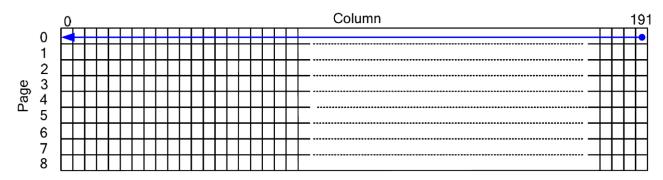



Fig 24. DDRAM Access Mapping (MX=1, AC[2:0]=4, PA[3:0]=0, CA[3:0]=0)

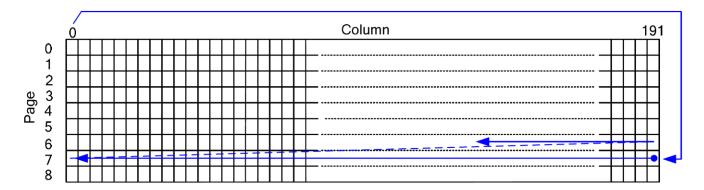



Fig 25. DDRAM Access Mapping (MX=1, AC[2:0]=5, PA[3:0]=7, CA[3:0]=0)

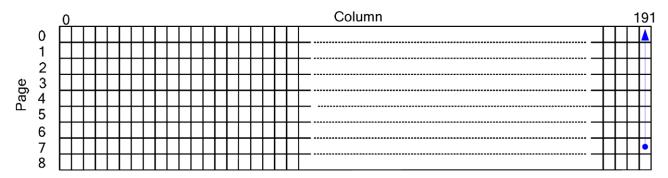



Fig 26. DDRAM Access Mapping (MX=1, AC[2:0]=6, PA[3:0]=7, CA[3:0]=0)

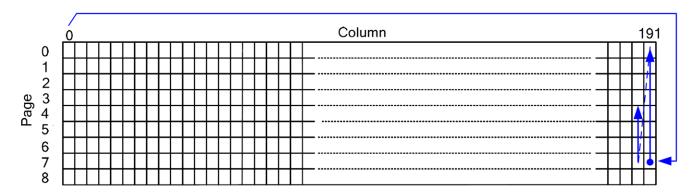
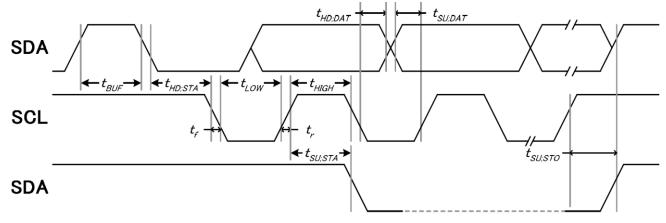




Fig 27. DDRAM Access Mapping (MX=1, AC[2:0]=7, PA[3:0]=7, CA[3:0]=0)

SPEC. REV.00 PAGE 11 OF 18

# SERIAL INTERFACE TIMING DIAGRAM




# SERIAL INTERFACE TIMING CHARACTERISTICS

| Item                                         | Signal | Symbol   | Condition | Min.     | Max. | Unit |
|----------------------------------------------|--------|----------|-----------|----------|------|------|
|                                              | Signal | _        | Condition | IVIIII.  |      |      |
| Serial clock frequency                       |        | fSCL     |           | -        | 400  | KHz  |
| SCL clock LOW period                         | SCL    | tLOW     |           | 1.3      | -    |      |
| SCL clock HIGH period                        | JOL    | tHIGH    |           | 0.6      | -    |      |
| BUS free time between a STOP and START       |        | tBUF     |           | 1.3      | -    |      |
| Data setup time                              |        | tSU;Data |           | 0.1      | -    | ]    |
| Data hold time                               |        | tHD;Data |           | 0        | 0.9  | us   |
| Setup time for a repeated START condition    | SDA    | tSU;STA  |           | 0.6      | -    | ]    |
| Start condition hold time                    |        | tHD;STA  |           | 0.6      | -    | ]    |
| Setup time for STOP condition                |        | tSU;STO  |           | 0.6      | -    | ]    |
| Signal rise time                             |        | tr       |           | 20+0.1Cb | 300  |      |
| Signal fall time                             | SDA    | tf       |           | 20+0.1Cb | 300  | ns   |
| Capacitive load represented by each bus line | SCL    | Cb       |           | -        | 400  | pF   |
| Tolerable spike width on bus                 |        | tSW      |           | -        | 50   | ns   |

Note: All timing is specified using 20% and 80% of VDD1 as the standard.





## **RESET TIMING**

 $(VDD1 = 1.8V \sim 3.3V, Ta = 25^{\circ}C)$ 

| ltem                  | Symbol | Condition | Min. | Max. | Unit |
|-----------------------|--------|-----------|------|------|------|
| Reset time            | tR     |           | -    | 1    | mc   |
| Reset "L" pulse width | tRW    |           | 1    | -    | ms   |

SPEC. REV.00 PAGE 12 OF 18



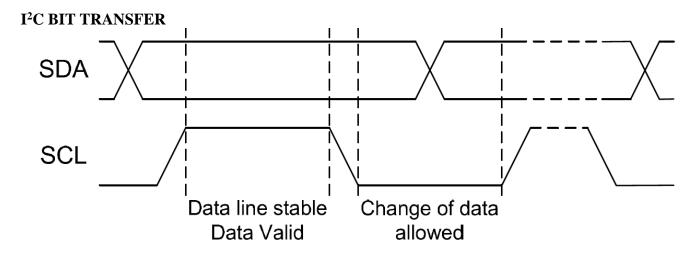



Fig 5. Bit Transfer

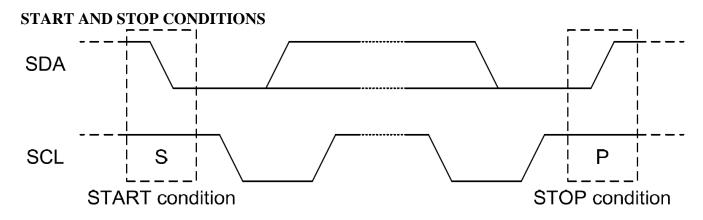



Fig 6. Definition of STRAT and STOP Condition

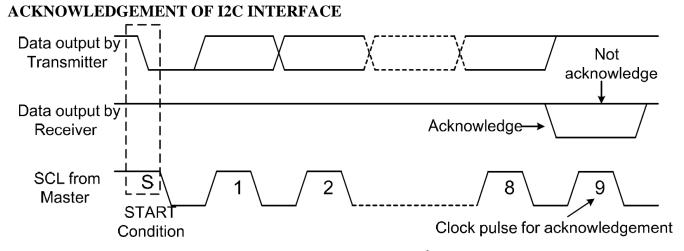



Fig 8. Acknowledgement of I<sup>2</sup>C Interface

SPEC. REV.00 PAGE 13 OF 18

#### **ELECTRO-OPTICAL CHARACTERISTICS**

MEASURING CONDITION: POWER SUPPLY = VOP / 64 Hz

TEMPERATURE =  $22 \pm 5$  °C

RELATIVE HUMIDITY =  $60 \pm 15 \%$ 

| ITEM           | SYMBOL | UNIT | TYP. STN |
|----------------|--------|------|----------|
| RESPONSE TIME  | Ton    | ms   | 180      |
|                | Toff   | ms   | 240      |
| CONTRAST RATIO | Cr     | -    | 15       |
|                | V3:00  | 0    | 40       |
| VIEWING ANGLE  | V6:00  | 0    | 70       |
| (6 O'clock)    | V9:00  | 0    | 40       |
| Cr ≥ 2         | V12:00 | 0    | 50       |

THE ELECTRO-OPTICAL CHARACTERISTICS ARE MEASURED VALUE BUT NOT GUARANTEED ONES.

## RELIABILITY OF LCD MODULE

|     |                              | TEST CONDITION                | TEST CONDITION                |           |
|-----|------------------------------|-------------------------------|-------------------------------|-----------|
| NO. | Item                         | FOR NORMAL TEMPERATURE        | FOR WIDE TEMPERATURE          | TIME      |
| 1   | High temperature operating   | 70°C                          | 90°C                          | 240 hours |
| 2   | Low temperature operating    | -20°C                         | -40°C                         | 240 hours |
| 3   | High temperature storage     | 80°C                          | 100°C                         | 240 hours |
| 4   | Low temperature storage      | -30°C                         | -50°C                         | 240 hours |
| 5   | Temperature-humidity storage | 60°C 90% R.H.                 | 80°C 90% R.H.                 | 96 hours  |
| 6   | Temperature cycling          | -30°C to 80°C                 | -50°C to 100°C                | 5 cycle   |
|     |                              | 30 Min Dwell                  | 30 Min Dwell                  | 3 cycle   |
| 7   | Vibration Test at LCM Level  | Freq 10-55 Hz                 | Freq 10-55 Hz                 |           |
|     |                              | Sweep rate: 10-55-10 at 1 min | Sweep rate: 10-55-10 at 1 min |           |
|     |                              | Sweep mode Linear             | Sweep mode Linear             | _         |
|     |                              | Displacement: 2 mm p-p        | Displacement: 2 mm p-p        |           |
|     |                              | 1 Hour each for X, Y, Z       | 1 Hour each for X, Y, Z       |           |

Inspection condition:

No. 1 ~ 6:

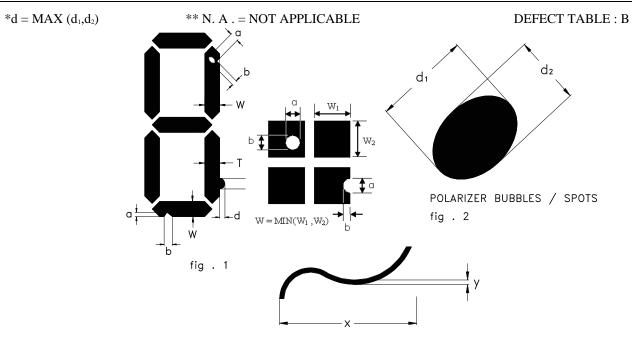
The samples should be placed in room temperature for 2 hours before inspection.

# Acceptance criteria:

No non-conformance found in functional and cosmetic.

SPEC. REV.00 PAGE 14 OF 18

SAMPLING METHOD


SAMPLING PLAN: ANSI/ASQ Z1.4

CLASS OF AQL: LEVEL II/ SINGLE SAMPLING

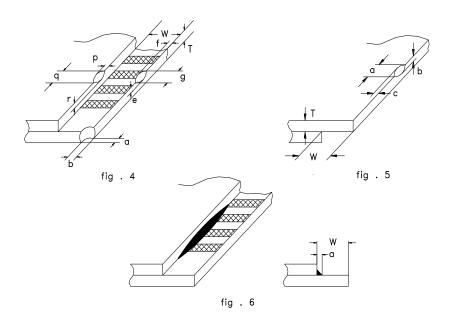
MAJOR-0.65% MINOR-1.5%

# **QUALITY STANDARD**

| DEFECT                 | CRITERIA                                                    | A                              | TYPE  | FIGURE |
|------------------------|-------------------------------------------------------------|--------------------------------|-------|--------|
| SHORT CIRCUIT          | -                                                           |                                | MAJOR | -      |
| MISSING SEGMENT        | -                                                           |                                | MAJOR | -      |
| UNEVEN / POOR CONTRAST | -                                                           |                                | MAJOR | -      |
| CROSS TALK             | -                                                           |                                | MAJOR | -      |
| PIN HOLE               | $MAX(a,b) \leq$                                             | 1 / 4 W                        | MINOR | 1      |
|                        | DOT MATRIX:                                                 |                                |       |        |
|                        | IF $0.6 \le W$ , MA                                         | $X(a,b) < 0.3 \text{ N.A.}^3$  |       |        |
|                        | IF $0.4 \le W < 0.6$ , MA                                   | $X(a,b) < 0.25 \text{ N.A}^3$  |       |        |
|                        | IF $W < 0.4$ , MA                                           | $X(a,b) < 0.2 \text{ N.A}^{3}$ |       |        |
| EXCESS SEGMENT         | $MAX(c,d) \leq$                                             | 1 / 4 T                        | MINOR | 1      |
| BUBBLES                | d* ≥ 0.2                                                    | QTY=0                          | MINOR | 2      |
| SPOTS                  | d ≤ 0.3                                                     | N.A.**                         | MINOR | 2      |
|                        | 0.3 <d≤0.4< td=""><td>QTY≤1</td><td></td><td></td></d≤0.4<> | QTY≤1                          |       |        |
|                        | 0.4 <d< td=""><td>QTY=0</td><td></td><td></td></d<>         | QTY=0                          |       |        |
| LINE SCRATCHES         | x≥0.7 y≥0.05                                                | QTY=0                          | MINOR | 3      |
| BLACK LINE             | x≥0.7 y≥0.05                                                | QTY=0                          | MINOR | 3      |



LINE SCRATCHES / BLACK LINE fig . 3


SPEC. REV.00 PAGE 15 OF 18

# $\ \, \textbf{QUALITY STANDARD} \, (\, \textbf{CONT.})$

| DEFECT   |              | CRITERIA            | ТҮРЕ  | FIGURE |
|----------|--------------|---------------------|-------|--------|
|          | CONTACT EDGE | e≤1/2T f≤1/3W g≤3.5 |       | 4      |
| CHIPS    | BOTTOM GLASS | p≤1.0 q≤3.5 r≤1/2T  | MINOR | 4      |
|          | CORNER       | a≤1.5 b≤W           |       | 4      |
|          | TOP GLASS    | a≤3.0 b≤1/3T c≤1/2W |       | 5      |
| GLASS PR | OTRUSION     | a ≤ 1/4 W           | MINOR | 6      |
| RAINBOW  | 7            | - MII               |       | -      |

UNLESS STATE OTHERWISE , ALL UNIT ARE IN MILLIMETER .

DEFECT TABLE : B



SPEC. REV.00 PAGE 16 OF 18

# **HANDLING PRECAUTIONS (For COG Only)**

#### (1) CAUTION OF LCD HANDLING & CLEANING

Use soft cloth with solvent (recommended below) to clean the display surface and wipe lightly.

- Isopropyl alcohol, ethyl alcohol, trichlorotriflorothane

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface. Do not use the following solvent;

-water, ketone, aromatics

#### (2) CAUTION AGAINST STATIC CHARGE

The LCD modules use CMOS LSI drivers, so customers are recommend that any unused input terminal would be connected to  $V_{\text{DD}}$  or  $V_{\text{SS}}$ , do not input any signals before power is turned on, and ground your body, work/assembly areas, assembly equipment to protect against static electricity.

Remove the protective film slowly and, if possible, under ESD control device like ion blower and humidity of working room should be kept over 50% RH to reduce risk of static charge.

#### (3) PACKAGING

Avoid intense shock and falls from a height and do not operate or store them exposed direct to sunshine or high temperature/humidity.

#### (4) CAUTION FOR OPERATION

It is an indispensable condition to drive LCD's within the specified voltage limit since the higher voltage than the limit causes the shorter LCD life. The use of direct current drive should be avoided because an electrochemical reaction due to direct current causes LCD's undesirable deterioration.

Response time will be extremely delayed at low temperature, and LCD's show dark color at high temperature. However those phenomena do not mean malfunction or out of order with LCD's.

Some font will be abnormally displayed when the display area is pushed hard during operation. But it resumes normal condition after turning off once.

#### (5) SOLDERING (for Pin type)

It is recommended to complete dip soldering at 270 °C or hand soldering at 280 °C within 3 seconds. The soldering position is at least 3mm apart from the pin head. Wave or reflow soldering are not recommended. Metal pins should not be soldered for more than 3 times and each soldering should be done after cool down of metal pins

#### (6) SAFETY

For crash damaged or unnecessary LCD's, it is recommended to wash off liquid crystal by either of solvents such as acetone and ethanol and should be burned up later.

When any liquid leaked out of a damaged glass cell comes in contact with your hands, wash it off with soap and water.

### WARRANTY

CLOVER will replace or repair any of her LCD module in accordance with her LCD specification for a period of one year from date of shipment. The warranty liability of Clover is limited to repair and/or replacement. Clover will not be responsible for any subsequent or consequential event.

SPEC. REV.00 PAGE 17 OF 18

# CLOVER DISPLAY LTD. CG12832B

# SPECIFICATION REVISION RECORD

| Revision No. | Description           | Date(DD/MM/YY) |
|--------------|-----------------------|----------------|
| 00           | 1 <sup>st</sup> Issue | 05/07/21       |

SPEC. REV.00 PAGE 18 OF 18