

LCD MODULE SPECIFICATION

Model: CV240160C - _ _ - _ - _ - _

Revision	02
Engineering	Jackson Fung
Date	18 February 2016
Our Reference	4940

ADDRESS: 1st FLOOR, EFFICIENCY HOUSE, 35 TAI YAU STREET, SAN PO KONG,

KOWLOON, HONG KONG.

TEL : (852) 2341 3238 (SALES OFFICE) (852) 2342 8228 (GENERAL OFFICE)

FAX : (852) 2357 4237 (SALES OFFICE)

E-MAIL : <u>cdl@cloverdisplay.com</u>

URL : http://www.cloverdisplay.com

MODE OF DISPLAY

Display mode STN: Yellow green Grey Blue (negative) FSTN positive FSTN negative	☐ Refle	condition ective type sflective type smissive type ers	Viewing direction ☐ 6 O' clock ☐ 12 O' clock ☐ 3 O' clock ☐ 9 O' clock
LCD MODULE NUMBER NO	TATION:		
CV240160C- MY - S F - N		*(2)Backlight I I I I I I I I I I I I I	N – No backlight E – EL backlight L – Side-lited LED backlight M – Array LED backlight M – Array LED backlight C – CCFL t color N – No backlight A – Amber B – Blue D – Orange W – White Y – Yellow green mode T – TN V – TN (Negative) B – STN Yellow green G – STN Grey B – STN Blue (Negative) F – FSTN N – FSTN (Negative) arizer type R – Reflective F – Transflective T – Transmissive ture range N – Normal W – Extended

SPEC. REV.02 PAGE 1 OF 24

GENERAL DESCRIPTION

Display mode : 240 x 160 dots, graphic TAB LCD module

Interface : 4 bit / 8 bit parallel

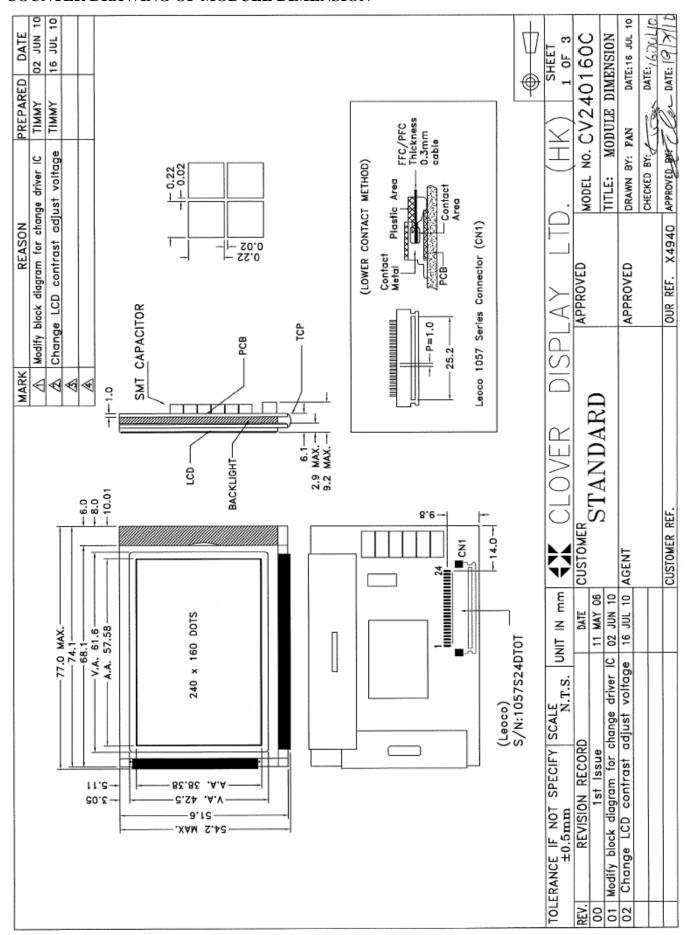
Driving method : 1/160 duty, 1/13 bias

Backlight : Side-lited LED

Controller IC : RAIO RA8822 or equivalent

For the detailed information, please refer to the IC specifications.

MECHANICAL DIMENSIONS


Item	Dimension	Unit
Outline Dimension	77.0 MAX.(L) x 54.2 MAX.(W) x 9.2 MAX.(H)	mm
Viewing Area	61.6(L)x42.5(W)	mm
Dot Pitch	0.24(L)x0.24(W)	mm
Dot Size	0.22(L)x0.22(W)	mm

CONNECTOR PIN ASSIGNMENT

COMME	CIONI	III ABBIUINIENI			
Pin No.	Symbol	Function	Pin No.	Symbol	Function
1	RS	Register select	13	DB4	
2	WR	Write signal	14	DB5	Data bus
3	RD	Read signal	15	DB6	Data bus
4	CS1	Chip enable	16	DB7	
5	VLCD	Contrast adjustment for LCD	17	CS2	Chip enable
6	VDD	Supply voltage for logic	18	BSY	Busy signal
7	VSS	Ground	19	INT	Interrupt signal
8	VEE	Supply voltage for LCD	20	RST	Reset
9	DB0		21	BL+	Supply voltage for backlight
10	DB1	Data bus	22	BL-	Supply voltage for backlight (-VE)
11	DB2	Data ous	23	NC	No connection
12	DB3		24	NC	No connection

SPEC. REV.02 PAGE 2 OF 24

COUNTER DRAWING OF MODULE DIMENSION

COUNTER DRAWING OF PIN OUT & BLOCK DIAGRAM

	(+VE) (-VE)	(HK) SHEET	MODEL NO. CV240160C TITLE: PIN OUT & BLOCK DIAGRAM	DRAWN BY: FAN DATE: 16 JUL 10 CHECKED BY: A DATE: 16 JUL 10	APPROVED BY CONDATE: 19/7/10
CN1 PIN NO. SYMBOL FUNCTION	1 RS Register select 2 WR Write signal 3 RD Read signal 4 CS1 Chip enable 5 V0 Contrast adjustment for LC 6 VDD Supply voltage for logic 7 VSS Ground 10 DB1 11 DB2 12 DB3 14 DB5 15 DB6 16 DB0 17 CS2 Chip enable 18 BSY Busy signal 19 BSY Busy signal 19 RST Reset 20 RST Reset 21 BL+ Supply voltage for backlight 22 BL- Supply voltage for backlight 23 NC No connection 24 NC No connection	DISPLAY LTD	APPROVED	APPROVED DRAW	OUR REF. X4940 APPRO
		ERANCE IF NOT SPECIFY SCALE ±0.5mm N.T.S. UNIT IN mm	REV. REVISION RECORD DAILE CUSTOMER OF 11 MAY 06 STANDARD OF Modify block diagram for change driver IC 02 JUN 10	Change LCD contrast adjust voltage 16 JUL 1	CUSTOMER REF.

Conditions: VSS=0V, Ta=25°C

ELECTRICAL CHARACTERISTICS

Item	Symbo	MIN.	TYP.	MAX.	Unit	Item	Symbol	MIN.	TYP.	MAX.	Unit
	1										
Supply Voltage for Logic	VDD	4.75	5.0	5.25	V	Power supply for LCD	VEE	21.0	_	25.0	V
Supply Current for Logic	IDD	_	8.0	12.0	mA	"H"Level Input Voltage	VIH	0.8VDD	_	VDD	V
LCD Contrast Adjustment (*)	VO	17.7	18.6	19.5	V	"L"Level Input Voltage	VIL	VSS	_	0.2VDD	V

Note (*): There is tolerance in optimum LCD driving voltage during production and it will be within the specified range.

Side Backlight

Constant current driving:

Item	Symbol	MIN.	TYP.	MAX.	Unit	Condition
Backlight Voltage	VBL	3.8	4.0	4.2	V	IBL = 60mA

ABSOLUTE MAXIMUM RATINGS

Please make sure not to exceed the following maximum rating values under the worst application conditions

rease make sure not to exceed the following maximum rating values under the worst appreciation conditions							
Item	Symbol	Rating (for normal temperature)	(for normal temperature) Rating (for wide temperature)				
Supply Voltage	VDD	-0.3 to 6.5	-0.3 to 6.5	V			
Input Voltage	VIN	-0.3 to VDD +0.3	-0.3 to VDD +0.3	V			
Operating Temperature	Topr	0 to 50	-20 to 70	$^{\circ}\!\mathbb{C}$			
Storage Temperature	Tstg	-10 to 60	-30 to 80	$^{\circ}\!\mathbb{C}$			

SPEC. REV.02 PAGE 5 OF 24

REGISTER LIST TABLE

Reg.	Reg.	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Default
No	Name										Data
00h	WLCR	R/W	PW1	PW0	SR		CG	DP	DK	DV	C9h
01h	MISC	R/W		CKN		PLR			CKB1	CKB0	F0h
02h	APSR	R/W			SP1	SP0	OAR		SRFS		10h
03h	ADSR	R/W					DADR	AUCM	AUSG	SGCM	80h
10h	WCCR	R/W	ARI	ALG	WDI	WBC	AWI	CP	CK	CSD	6Fh
11h	DWLR	R/W	CR3	CR2	CR1	CR0	DY3	DY2	DY1	DY0	22h
12h	MAMR	R/W	GIM	RM2	RM1	RM0	OP1	OP2	WM1	WM0	91h
20h	AWRR	R/W			X5	X4	Х3	X2	X1	X0	27h
21h	DWRR	R/W			A5	A4	A3	A2	A1	A0	27h
30h	AWBR	R/W	Y7	Y6	Y5	Y4	Y3	Y2	Y1	Y0	EFh
31h	DWBR	R/W	В7	B6	B5	B4	В3	B2	B1	B0	EFh
40h	AWLR	R/W			SS5	SS4	SS3	SS2	SS1	SS0	00h
41h	DWLR	R/W			C5	C4	C3	C2	C1	C0	00h
50h	AWTR	R/W	SC7	SC6	SC5	SC4	SC3	SC2	SC1	SC0	00h
51h	DWTR	R/W	D7	D6	D5	D4	D3	D2	D1	D0	00h
60h	CPXR	R/W			RS5	RS4	RS3	RS2	RS1	RS0	00h
61h	BGSG	R/W			DS5	DS4	DS3	DS2	DS1	DS0	00h
70h	CPYR	R/W	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	00g
71h	BGCM	R/W	CB7	CB6	CB5	CB4	CB3	CB2	CB1	CB0	00h
72h	EDCM	R/W	CD7	CD6	CD5	CD4	CD3	CD2	CD1	CD0	EFh
80h	BTMR	R/W	BT7	BT6	BT5	BT4	BT3	BT2	BT1	BT0	33h
81h	FRCA	R/W									00h
90h	SCCR	R/W	CK7	CK6	CK5	CK4	CK3	CK2	CK1	CK0	04h
91h	FRCB	R/W									00h
A0h	INTR	R/W	INK	INT	INX	INY	MSK	MST	MSX	MSY	00h
A1h	KSCR	R/W	KEN	KSZ	KDT1	KDT0		KF2	KF1	KF0	00h
A2h	KSDR	RO	KS7	KS6	KS5	KS4	KS3	KS2	KS1	KS0	00h
A3h	KSER	RO	KD7	KD6	KD5	KD4	KD3	KD2	KD1	KD0	00h
B0h	INTX	R/W			IX5	IX4	IX3	IX2	IX1	IX0	27h
B1h	INTY	R/W	IY7	IY6	IY5	IY4	IY3	IY2	IY1	IY0	EFh
C0h	TPCR	R/W	AZEN	AZOE		SCAN	AS3	AS2	AS1	AS0	00h
C1h	TPSR	R/W	ARDY	ADET	1	1	AF1	AF0			0Fh
C8h	TPXR	RO	TPX9	TPX8	TPX7	TPX6	TPX5	TPX4	TPX3	TPX2	00h
C9h	TPYR	RO	TPY9	TPY8	TPY7	TPY6	TPY5	TPY4	TPY3	TPY2	00h
CAh	TPZR	RO	TPX1	TPX0			TPY1	TPY0			00h
D0h	LCCR	R/W	DZEN			DAC4	DAC3	DAC2	DAC1	DAC0	8Fh
E0h	PNTR	R/W	FD7	FD6	FD5	FD4	FD3	FD2	FD1	FD0	00h
F0h	FNCR	R/W	TNS	BNK	RM1	RM0	FDA	ASC	ABS1	ABS0	92h
F1h	FVHT	R/W	FH1	FH0	FV1	FV0	1	1	1	1	0Fh

SPEC. REV.02 PAGE 6 OF 24

REGISTER DESCRIPTION

REG [00h] Whole Chip LCD Controller Register (WLCR)

Bit	Description	Text/Graph	Default	Access
7-6	Power Mode 1 1: Normal Mode. All of the functions of RA8803/8822 are available in this mode. 0 0: Off Mode. When RA8803/8822 is in off mode, all of functions enter power-off mode, except the wake-up trigger block. If wake-up event occurred, RA8803/8822 would wake-up and return to Normal mode.	1	3h	R/W
5	Software Reset: 1 : Reset all registers except flushing RAM 0 : Normal Operation		0h	R/W
4	Reserved.		0h	R/W
3	Display Mode Selection 1 : Character Mode. The written data will be treated as a GB/BIG/ASCII code. 0 : Graphical Mode. The written data will be treated as a bitmap pattern.	-1	1h	R/W
2	Set Display On/Off Selection The bit is used to control LCD Driver Interface signals DISP_OFF. 1: DISP_OFF pin output high(Display On). 0: DISP_OFF pin output low(Display Off).	Text/Graph	0h	R/W
1	Blink Mode Selection 1 : Blink Full Screen. The blink time is set by register BTMR. 0 : Normal Display.	Text/Graph	0h	R/W
0	Inverse Mode Selection 1 : Normal Display 0 : Inverse Full Screen. It will cause the display inversed.	Text/Graph	1h	R/W

REG [01h] Misc. Register (MISC)

Bit	Description	Default	Access
7	Reserved.	1h	R/W
	Clock Output (Pin CLK_OUT) Control		
6	1 : Enable	1h	R/W
	0 : Disable		
5	Reserved.	1h	R/W
4	Interrupt (INT) and Busy Polarity	1h	R/W
"	1 : Set Active High	""	F/VV

SPEC. REV.02 PAGE 7 OF 24

	0 : Set Active Low		
3-2	Reserved.	0h	R/W
	Clock Speed Selection		
	0 0 : 3MHz		
1-0	0 1 : 4MHz	0h	R/W
	1 0 : 8MHz		
	1 1 : 12MHz		

REG [02h] Advance Power Setup Register (APSR)

Bit	Description	Default	Access
7-6	Reserved	0h	R/W
5-4	ROM/RAM Reading Speed		
	0 0 : Speed0 (30ns@Vdd=3.3V)		
	0 1 : Speed1 (60ns@Vdd=3.3V)	1h	R/W
	1 0 : Speed2 (90ns@Vdd=3.3V)		
	1 1 : Speed3 (120ns@Vdd=3.3V)		
	Font ROM Readable for MPU		
3	1 : Enable	0h	R/W
	0 : Disable		
2	Reserved	0h	R/W
	Scrolling Reset for Start		
1	0 : Disable	0h	R/W
	1 : Enable		
0	Reserved	0h	R/W

REG [03h] Advance Display Setup Register (ADSR)

Bit	Description	Default	Access
7-4	Reserved	8h	R/W
	Set Display RAM Order (Byte)		
3	1 : Inverse Data of Byte	0h	R/W
	0 : Normal Mode		
	Common Auto Scrolling		
2	1 : Enable	0h	R/W
	0 : Disable		
	Segment Auto Scrolling		
1	1 : Enable	0h	R/W
	0 : Disable		
0	Common or Segment Scrolling Selection		
	1 : Segment Scrolling	0h	R/W
l	0 : Common Scrolling		
	In Extension Mode(REG[12h] bit[6:4] = "110" "111"), this bit must		
	be high.		

SPEC. REV.02 PAGE 8 OF 24

REG [10h] Whole Chip Cursor Control Register (WCCR)

Bit	Description	Text/Graph	Default	Access
7	Auto Increase Cursor Position in Reading DDRAM Operation. 1 : Enable (Auto Increase) 0 : Disable	Text/Graph	Oh	R/W
6	Chinese/English Character Alignment 1: Enable 0: Disable The bit only valid in character mode, that can align full-size and half-size mixed font.	Text	1h	R/W
5	Store Current Data to DDRAM 1 : Store Current Data to DDRAM Directly 0 : Store Current Data to DDRAM Inversely	Text/Graph	1h	R/W
4	Bold Font (Character Mode Only) 1 : Bold Font 0 : Normal Font	Text	0h	R/W
3	Auto Increase Cursor Position in Writing DDRAM Operation. 1 : Enable (Auto Increase) 0 : Disable	Text/Graph	1h	R/W
2	Cursor Display 1 : Set Cursor Display On 0 : Set Cursor Display Off	Text/Graph	1h	R/W
1	Cursor Blinking 1 : Blink Cursor. The blink time is determined by BTMR. 0 : Normal	Text/Graph	1h	R/W
0	Cursor Width 1: Cursor width is auto adjust by input data. When half size font, the width is one bit(8 Pixel). When full size font, the width is two bit(16 Pixel). 0: Cursor is fixed at one byte width(8 Pixel).		1h	R/W

REG [11h] Distance of Words or Lines Register (DWLR)

Bit	Description	Default	Access
7-4	Set Cursor Height	2h	R/W
3-0	Set Line Distance	2h	R/W

SPEC. REV.02 PAGE 9 OF 24

REG [12h] Memory Access Mode Register (MAMR)

Bit	Description	Default	Access
	In Graphic Mode, Cursor Auto Shifting Direction		
7	1 : Horizontal moving first then Vertical.	1h	R/W
	0 : Vertical moving first then Horizontal.		
	Display Layer Selection		
	0 0 1 : Only Show Page1		
	0 1 0 : Only Show Page2		
	0 1 1 : Show Two Layer Mode. The display rule depends on Bit3 and		
	Bit2 as following.		
	0 0 0 : Gray Mode. In this mode, each pixel gray of LCD depends on		
	the value of Page1 & Page2.		
	Page1 Page2 Gray		
6-4	 0 0 Level1	1h	R/W
	1 0 Level2		
	0 1 Level3		
	1 1 Level4		
	1.1.0 : Extension Mode(1), the nanel will show both Dage1 and		
	1 1 0 : Extension Mode(1), the panel will show both Page1 and		
	Page2. The RA8803 is available for 640x240 dots panel, and RA8822 for 480x160 dots panel.		
	1 1 1 : Extension Mode(2), the panel will show both Page1 and		
	Page2. The RA8803 is available for 320x480 dots panel, and		
	RA8822 for 240x320 dots panel.		
	Two Layer Mode Selection		
	0 0 : Page1 RAM "OR" Page2 RAM		
0.0	0 1 : Page1 RAM "XOR" Page2 RAM	O.L.	D.044
3-2	1 0 : Page1 RAM "NOR" Page2 RAM	0h	R/W
	1 1 : Page1 RAM "AND" Page2 RAM		
	Please refer to Figure 7-10 for more explanation.		
	MPU Read/Write Layer Selection		
	0 0 : Access Page0 (512B SRAM) Display Data RAM.		
	0 1 : Access Page1 (9.6KB SRAM) Display Data RAM.		
1-0	1 0 : Access Page2 (9.6KB SRAM) Display Data RAM.	1h	R/W
	1 1 : Access Page1 and Page2 Display Data RAM at the same time.		
	The Page0 are used for create some temporary characters. Please		
	refer to AP Note for more details.		

SPEC. REV.02 PAGE 10 OF 24

REG [20h] Active Window Right Register (AWRR)

Bit	Description	Default	Access
7-6	Reserved	0h	R
5-0	Active Window Right Position → Segment-Right	27h	R/W

Note: REG [20h, 30h, 40h, 50h] are used for the function of change the line and page. Users can use these four Registers to set a block as an active window. When data goes beyond the right boundary of active window (The value is set by REG [20h, 30h, 40h, 50h]), then the cursor will automatically change the line and write in data continuously. It means the cursor will move to the left boundary of active window, which is set by REG [40h]. When the data comes to the bottom line of the right side (set by REG [20h and 30h]), then the cursor will be moved to the first line of the left side automatically and continue to put in data. (set by REG [40h, 50h]).

REG [30h] Active Window Bottom Register (AWBR)

Bit	Description	Default	Access
7-0	Active Window Bottom Position → Common-Bottom	EFh	R/W

REG [40h] Active Window Left Register (AWLR)

Bit	Description	Default	Access
7-6	Reserved	0h	R
5-0	Active Window Left Position → Segment-Left	0h	R/W

REG [50h] Active Window Top Register (AWTR)

Bit	Description	Default	Access
7-0	Active Window Top Position → Common-Top	0h	R/W

REG [21h] Display Window Right Register (DWRR)

Bit	Description	Default	Access
7-6	Reserved	0h	R/W
	Set Display Window Right Position → Segment-Right		
	Segment-Right = (Segment Number / 8) – 1		
5-0	RA8803: If LCD panel resolution is $320*240$, the value of the register is: $(320/8) - 1 = 39 = 27h$ RA8822: If LCD panel resolution is $240*160$, the value of the register is: $(240/8) - 1 = 29 = 1Dh$	27h	R/W

Note: REG[21h, 31h, 41h, 51h] are used to set Display Window Resolution. Users can set the viewing scope of Display RAM. Column Address of RA8803 can be set between 0~27h, and Row Address can be set between 0~EFh. Column Address of RA8822 can be set between 0~1Dh, and Row Address can be set between 0~9Fh. Users can set start and end address first, and then by adding shift function to present the effect of rolling.

SPEC. REV.02 PAGE 11 OF 24

REG [31] Display Window Bottom Register (DWBR)

Bit	Description	Default	Access
	Display Window Bottom Position → Common-Bottom		
	Common_ Bottom = LCD Common Number –1 + n		
7-0	RA8803: If LCD panel resolution is $320*240(n=0)$, the value of the register is: $240 - 1 = 239 = EFh$	EFh	R/W
	RA8822: If LCD panel resolution is $240*160(n=0)$, the value of the register is: $160 - 1 = 159 = 9$ Fh		

REG [41] Display Window Left Register (DWLR)

Bit	Description	Default	Access
7-0	Display Window Left Position → Segment-Left	0h	R/W
7-0	Usually set "0h".	OII	17/00

REG [51] Display Window Top Register (DWTR)

	Bit	Description	Default	Access
	7-0	Display Window Top Position → Common-Top	0h R	R/W
L	7-0	Usually set "0h".	OH	1000

Note: For some registers setting, please refer the following rule:

- 1. DWRR≥ AWRR≥ CPXR≥ AWLR≥ DWLR
- 2. $DWBR \ge AWBR \ge CPYR \ge AWTR \ge DWTR$

REG [60h] Cursor Position X Register (CPXR)

Bit	Description	Default	Access
7-6	Reserved	0h	R
5-0	Cursor Position of Segment	0h	R/W

REG [61h] Begin Segment Position Register (BGSG)

Bit	Description	Default	Access
7-6	Reserved	0h	R/W
5-0	Segment Start Position of Scrolling Mode	0h	R/W

REG [70h] Cursor Position Y Register (CPYR)

Bit	Description	Default	Access
7-0	Cursor Position of Common	0h	R/W

SPEC. REV.02 PAGE 12 OF 24

REG [71h] Scrolling Action Range, Begin Common Register (BGCM)

	Bit	Description	Default	Access
ſ	7-0	Common Start Position of Scrolling Mode	0h	R/W

REG [72h] Scrolling Action Range END Common Register (EDCM)

	Bit	Description	Default	Access
ſ	7-0	Common Ending Position of Scrolling Mode	EFh	R/W

REG [80h] Blink Time Register (BTMR)

Bit	Description	Default	Access
	Cursor Blink Time		
7-0	Blinking Time = Bit [70] x (1/Frame_Rate)	33h	R/W
	The setup of Frame Rate is depends on the LCD panel.		

REG [81h] Frame Rate Polarity Change at Common_A Register (FRCA)

Bi	it	Description	Default	Access
7-	0	Reserved	0h	R/W

REG [91h] Frame Rate Polarity Change at Common_B Register (FRCB)

Bit	Description	Default	Access
7-0	Reserved	0h	R/W

REG [90h] Shift Clock Control Register (SCCR)

Bit	Description	Default	Access
	Shift Clock Cycle		
	SCCR = (SCLK x DW) / (Seg x Com x FRM)		
	SCLK: RA8803/8822 System Clock (Unit: Hz)	4h	R/W
	DW : Bus Width of LCD Driver(Unit : Bit)		
7-0	Seg : Segment Number of LCD Panel(Unit : Pixel)		
	Com : Common Number of LCD Panel (Unit : Pixel)		
	FRM : Frame Rate of LCD Panel(Unit : Hz)		
	Note: SYS_DW=0, If LCD Data Bus is 4it then SCCR has to ≥ 4.		
	SYS_DW=1, If LCD Data Bus is 8it then SCCR has to \geq 2.		

SPEC. REV.02 PAGE 13 OF 24

REG [A0h] Interrupt Setup & Status Register (INTR)

Bit	Description	Default	Access
7	Key Scan Interrupt Flag 1 : Key Scan Detects Key Input 0 : Key Scan doesn't Detect Key Input	0h	R (Read Clear)
6	Touch Panel Detect 1 : Touch Panel Touched 0 : Touch Panel Untouched	0h	R (Read Clear)
5	Cursor Column Status 1 : The Cursor Column is equal to INTX 0 : The Cursor Column is not equal to INTX	0h	R (Read Clear)
4	Cursor Row Status 1 : The Cursor Row is equal to INTY 0 : The Cursor Row is not equal to INTY	0h	R (Read Clear)
3	Key Scan Interrupt Mask 1 : Enable Key Scan Interrupt 0 : Disable Key Scan Interrupt	0h	R/W
2	Touch Panel Interrupt Mask 1 : Generate interrupt output if touch panel was detected. 0 : Don't generate interrupt output if touch panel was detected.	0h	R/W
1	Register[B0h] INTX Event Mask 1 : Enable INTX Interrupt 0 : Disable INTX Interrupt	0h	R/W
0	Register[B1h] INTY Event Mask 1 : Enable INTY Interrupt 0 : Disable INTY Interrupt	0h	R/W

REG [A1h] Key Scan Controller Register (KSCR)

Bit	Description	Default	Access
	Key Scan Enable Bit		
7	1 : Enable	0h	R/W
	0 : Disable		
	Key Scan Matrix Selection		
6	1 : 4x4 Matrix	0h	R/W
	0 : 8x8 Matrix		
	Key Scan Data Sampling Times		
	0 0 : 2h		
5-4	0 1 : 4h	0h	R/W
	1 0 : 8h		
	1 1 : 16h		
3	Reserved	0h	R/W
2-0	Key Scan Frequency Selection	0h	R/W

SPEC. REV.02 PAGE 14 OF 24

0 0 0 : 2 x FRM	
0 0 1 : 4 x FRM	
0 1 0 : 8 x FRM	
0 1 1 : 16 x FRM	
1 0 0 : 32 x FRM	
1 0 1 : 64 x FRM	
1 1 0 : 128 x FRM	
1 1 1 : 256 x FRM	

REG [A2h] Key Scan Data Register (KSDR)

Bit	Description	Default	Access
7-0	Key Scan KC[7~0] Output	0h	R

REG [A3h] Key Scan Data Expand Register (KSER)

Bit	Description	Default	Access
7-0	Key Scan KR[7~0] Input	0h	R

REG [B0h] Interrupt Column Setup Register (INTX)

Bit	Description	Default	Access
7-6	Reserved	0h	R
	Column Address of Interrupt		
5-0	If Cursor Position X Register (CPXR)=INTX, then an interrupt	27h	R/W
	occurred.		

REG [B1h] Interrupt Row Setup Register (INTY)

Bit	Description	Default	Access
7-0	Row Address of Interrupt If Cursor Position Y Register (CPYR)=INTY, then an interrupt has occurred.	EFh	R/W

SPEC. REV.02 PAGE 15 OF 24

REG [D0h] LCD Contrast Control Register (LCCR)

Bit	Description	Default	Access
	DAC Function		
7	1 : Disable	1h	R/W
	0 : Enable		
6-5	Reserved	0h	
	DAC Driving Current		
	0 0 0 0 b (Min. Current)		
4-0	:	0Fh	R/W
4-0	:	OFII	TV VV
	:		
	1 1 1 1 1b (Max. Current)		

REG [E0h] Pattern Data Register (PNTR)

Bit	Description	Default	Access
7-0	 (1) Data Written to DDRAM When REG[F0h] bit3 is '1', it will read the data from Register [E0h] and fill the whole DDRAM. After the movement of filling the Active window, REG [F0h] bit3 will become "0". (2) Display Times of Gray Mode For Gray Mode(Register MAMR bit[64] = 000), These register used to control the display times. If the frame rate is fixed, the number of "1" and "0" are represent the display ratio of 1 and 0. Please see Chapter 7-10 and AP Note 9-23 for more description. 	0h	R/W

REG [F0h] Font Control Register (FNCR)

Bit	Description	Text/Graph	Default	Access
	Font ROM Transfer Circuit			
7	1 : Enable		1h	R/W
	0 : Bypass			
	When bit5~4 set as "00" → ROM Mode0, this bit could be			
6	used to select the upper or lower part of 256KB ROM.		0h	R/W
O	1 : Select lower part of 256KB ROM			13/11
	0 : Select upper part of 256KB ROM			
	Select Font ROM Type			
5-4	0 0 : Select GB font ROM (256KB, Mode0)		1h	R/W
5-4	0 1 : Select BIG5 font ROM (512KB, Mode1)			IX/VV
	1 0 : Support GB font ROM (512KB, Mode2)			
	Fill PNTR Data to DDRAM			
3	1 : Fill Data to DDRAM Enable	Graph	0h	R/W
	0 : No Action			

SPEC. REV.02 PAGE 16 OF 24

CV240160C

	When this bit is "1", RA8803/8822 will automatically read PNTR data, and fill it to DDRAM (Range:[AWLR, AWTR] ~ [AWRR, AWBR]), and then this bit will be cleaned to "0".			
2	ASCII Code Selection 1 : All input data will be decoded as ASCII (00~FFh) 0 : The RA8803/8822 will check the first byte data first. If the first byte is 00~9Fh then regarded as ASCII (Half-size). If first byte is A0~FFh then regarded as GB/BIG5 (Full-size).	Text	0h	R/W (Auto Clear)
1-0	ASCII Blocks Select 0 0 : Map to ASCII block 0, Latin_1 0 1 : Map to ASCII block 1, Latin_2 1 0 : Map to ASCII block 2, Latin_3 1 1 : Map to ASCII block 3, Latin_4	1	2h	R/W

REG [F1h] Font Size Control Register (FVHT)

Bit	Description	Default	Access
	Set Character Horizon Size		
	0 0 : One Time		
7-6	0 1 : Two Times	0h	R/W
	1 0 : Three Times		
	11: Four Times		
	Set Character Vertical Size		
	0 0 : One Time		
5-4	0 1 : Two Times	0h	R/W
	10: Three Times		
	11: Four Times		
3-0	Reserved	Fh	R/W

SPEC. REV.02 PAGE 17 OF 24

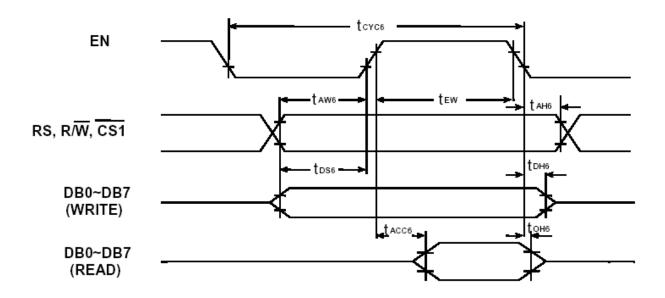
A.C. CHARACTERISTICS

1. For 8080 series :

Signal	Symbol	bol Parameter Rating		Unit	Condition	
Olgilai	Oyillooi	i di dilletei	Min	Max	Oill	Condition
RS, CS1#	t _{AH8}	Address hold time	10	-	ns	System Clock:
K3, C31#	t _{Aw8}	Address setup time	63	ŀ	ns	8MHz Voltage: 3.3V
WR#, RD#	t _{CYC}	System cycle time	800		ns	voltage. 5.5 v
VII\π, I\Dπ	t _{cc}	Strobe pulse width	400	1	ns	
	t _{DS8}	Data setup time	63	-	ns	
DB0 to DB7	t _{DH8}	Data hold time	10		ns	
DB0 10 DB7	t _{ACC8}	RD access time	1	330	ns	
	t _{OH8}	Output disable time	10	ı	ns	

2. For 6800 series :

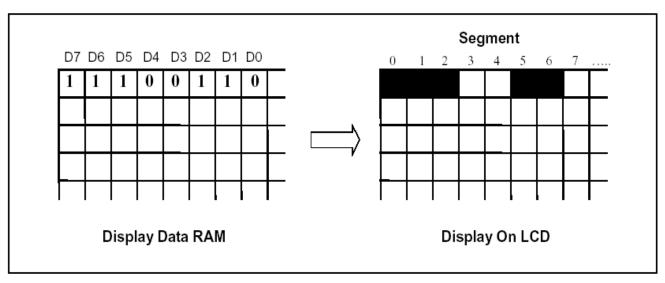
Signal	Symbol	Parameter	Rating		Rating	Unit	Condition
Signal	Syllibol	raiailletei	Min	Max	Oilit	Condition	
	t _{AH6}	Address hold time	10	1	ns	System Clock: 8MHz	
A0, R/W#, CS1#	t _{Aw6}	Address setup time	63	1	ns	Voltage: 3.3V	
	t _{CYC6}	System cycle time	800	1	ns		
	t _{DS6}	Data setup time	63	1	ns		
DB0 to DB7	t _{DH6}	Data hold time	10	1	ns		
DB0 t0 DB7	t _{ACC6}	Access time	1	330	ns		
	t _{OH6}	Output disable time	10	-	ns		
EN	t_{EW}	Enable pulse width	400		ns		


SPEC. REV.02 PAGE 18 OF 24

TIMING DIAGRAMS

1. For 8080 series :

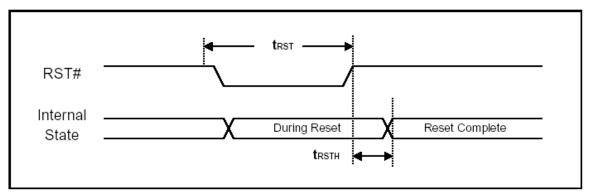
2. For 6800 series :

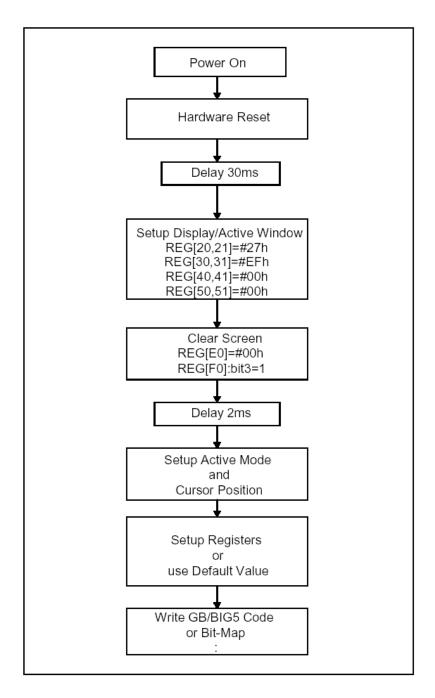

SPEC. REV.02 PAGE 19 OF 24

DATA ACCESS WITH MCU

No.	RS	6800	0808		DB0-DB7	Function
		R/W#	RD#	WR#	מם-מם	Function
1	1	1	0	1	xxh	Read Display Data
2	1	0	1	0	High Byte >Low Byte	Write Display Data (Character Mode – Chinese): Execute Step ② twice. At first, write the High Byte of Chinese Code, then write Low Byte.
3	1	0	1	0	xxh	Write Display Data (Character Mode – English, ASCII)
4	1	0	1	0	xxh	Write Display Data (Graphic Mode)
(5)	0	0	1	0	Address	Read Data(Status) from Register: Step ⑤ → Step ⑥
6	0	1	0	1	Status	
7	0	0	1	0	Address	Write Command to Register: Step ⑦ → Step ®
8	0	0	1	0	Command	

DISPLAY DATA RAM


The RA8822 support 240Column x 160Row for maximum panel, so it need 4.8Kbyte display RAM. If some place in DDRAM was filled in "1", then the corresponding place of LCD panel will be lighted up. Please see below:


SPEC. REV.02 PAGE 20 OF 24

RESET TIMING

Reset timing: trst must over 250ms and trsth must over 50ms. The RA8822 Reset need enough time to complete the reset procedure.

RESET PROCESS

SPEC. REV.02 PAGE 21 OF 24

ELECTRO-OPTICAL CHARACTERISTICS

MEASURING CONDITION: POWER SUPPLY = Vop / 64 Hz

TEMPERATURE = 23 ± 5 °C

RELATIVE HUMIDITY = $60 \pm 20 \%$

ITEM	SYMBOL	UNIT	TYP. STN
DESDONISE TIME	Ton	ms	320
RESPONSE TIME	Toff	ms	430
CONTRAST RATIO	Cr	-	8
	V3:00	0	40
VIEWING ANGLE	V6:00	0	55
(Cr ≥ 2)	V9:00	0	40
	V12:00	0	35

THE ELECTRO-OPTICAL CHARACTERISTICS ARE MEASURED VALUE BUT NOT GUARANTEED ONES.

SPEC. REV.02 PAGE 22 OF 24

RELIABILITY OF LCD MODULE

	•			
	TEST CONDITION	TEST CONDITION		
ITEM	FOR NORMAL TEMPERATURE	FOR WIDE TEMPERATURE	TIME	
High temperature operating	50°C	70°C	240 hours	
Low temperature operating	0°C	-20°C	240 hours	
High temperature storage	60°C	80°C	240 hours	
Low temperature storage	-10°C	-30°C	240 hours	
Temperature-humidity storage	40°C 90% R.H.	60°C 90% R.H.	96 hours	
Temperature cycling	-10°C to 60°C -30°C to 80°C		5 avala	
	30 Min Dwell	30 Min Dwell	5 cycle	
Vibration Test at LCM Level	Freq 10-55 Hz	Freq 10-55 Hz		
	Sweep rate: 10-55-10 at 1 min	Sweep rate: 10-55-10 at 1 min		
	Sweep mode Linear	Sweep mode Linear	_	
	Displacement: 2 mm p-p	Displacement: 2 mm p-p		
	1 Hour each for X, Y, Z	1 Hour each for X, Y, Z		

QUALITY STANDARD OF LCD MODULE

1.0	Sampling Method							
	Sampling Plan: MIL	STD 105 E						
	Class of AQL : Level II/Single Sampling							
	Critical: 0.25% Major 0.65% Minor 1.5%							
2.0	Defect Group Failure Categor		Failure Reasons					
	Critical Defect	Malfunction	Open					
	0.25%(AQL)		Short					
			Burnt or dead component					
			Missing part/improper part P.C.B.					
			Broken					
	Major Defect	Poor Insulation	Potential short					
	0.65%(AQL)		High current					
			Component damage or scratched					
			or Lying too close improper coating					
		Poor Conduction	Damage joint					
			Wrong polarity					
			Wrong spec. part					
			Uneven/intermittent contact					
			Loose part					
			Copper peeling					
			Rust or corrosion or dirt's					
	Minor Defect Cosmetic Defect		Minor scratch					
	1.5%(AQL)		Flux residue					
			Thin solder					
			Poor plating					
			Poor marking					
			Crack solder					
			Poor bending					
			Poor packing					
			Wrong size					

SPEC. REV.02 PAGE 23 OF 24

HANDLING PRECAUTIONS

(1) CAUTION OF LCD HANDLING & CLEANING

The polarizing plate on the surface of the panel is made from organic substances. Be very careful for chemicals not to touch the plate or it leads the polarizing plate to deteriorate.

If the use of a chemical is unavoidable, wipe the panel lightly with soft materials, such as gauze and absorbent cotton, soaked in a solvent.

Avoid wiping with a dry cloth, since it could damage the surface of the polarizing plate and others.

Do not expose to direct sunlight or fluorescent light for a long time

(2) CAUTION AGAINST STATIC CHARGE

The LCD modules use CMOS LSI drivers, so customers are recommended that any unused input terminal would be connected to V_{DD} or V_{SS} , do not input any signals before power is turned on, and ground your body, work/assembly areas, assembly equipment to protect against static electricity.

(3) ESD PRECAUTION

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is recommended to take normal precautions appropriate to handling LCM module. For example: product surface grounding. Always take ESD precaution when handling the *LCD Module*. Components are exposed for direct finger touches and can be damaged unless ESD precaution is taken.

(4) PACKAGING

Avoid intense shock and falls from a height and do not operate or store them exposed to direct sunshine or high temperature/humidity for long periods.

(5) CAUTION FOR OPERATION

The viewing angle can be adjusted by varying the LCD driving voltage VO.

Driving voltage should be kept within specified range, excess voltage shortens display life.

Response time increases with decrease in temperature.

Display may turn black or dark Blue at temperature above its operational range; this is however not destructive and the display will return to normal once the temperature falls back to range.

Mechanical disturbance during operation (such as pressing on the viewing area) may cause the segments to appear "fractured". They will recover once the display is turned off.

Condensation at terminals will cause malfunction and possible electrochemical reaction. Relative humidity of the environment should therefore be kept below 60%.

(6) SAFETY

Liquid crystal may leak out of a damaged LCD, it is recommended to wash off the liquid crystal by using solvents such as acetone or ethanol and should be burned up later.

If any liquid leak out of a damaged glass cell comes in contact with your hands, wash it off with soap and water immediately.

WARRANTY

CLOVER will replace or repair any of her LCD module in accordance with her LCD specification for a period of one year from date of shipment. The warranty liability of Clover is limited to repair and/or replacement. Clover will not be responsible for any subsequent or consequential event.

SPEC. REV.02 PAGE 24 OF 24

^{*}Usable solvent: Alcohol (ethanol, IPA and the like)

^{*}Appropriate solvent: Ketones, ethyl alcohol