

LCD MODULE SPECIFICATION

Model: CV12864B - _ _ - _ - _ - _

Revision	09
Engineering	Kemp Huang
Date	05 September 2014
Our Reference	4912

ADDRESS: 1st FLOOR, EFFICIENCY HOUSE, 35 TAI YAU STREET, SAN PO KONG,

KOWLOON, HONG KONG.

TEL : (852) 2341 3238 (SALES OFFICE) (852) 2342 8228 (GENERAL OFFICE)

FAX : (852) 2357 4237 (SALES OFFICE)

E-MAIL : cdl@cloverdisplay.com

URL: http://www.cloverdisplay.com

MODE OF DISPLAY Display mode	Display condition	Viewing direction
STN: Yellow green	Reflective type	6 O' clock
Grey	☐ Transflective type	☐ 12 O' clock
☐ Blue (negative)	☐ Transmissive type	3 O' clock
_	Others	9 O' clock
☐ FSTN positive☐ FSTN negative	U Others	□ 90 clock
LCD MODULE NUMBER N	OTATION:	
<u>CV12864B- MY - S F - N</u>		number of standard LCD Modules
<u>C V 1200+D</u> - <u>W11</u> - <u>S 1</u> - <u>IV</u>		
$(1) \qquad (2) (3) (4) (5) (6)$		N – No backlight
(1) (2) (3) (1) (3) (6	, (1) (0)	L – Side-lited LED backlight
		M– Array LED backlight
	*(3)Backlig	
	, ,	N – No backlight
		A – Amber
		B – Blue
		O– Orange
		W–White
		Y – Yellow green
	*(4)Display	
		T – TN
		V – TN (Negative)
		S – STN Yellow green
		G – STN Grey
		B – STN Blue (Negative) F – FSTN
		N – FSTN (Negative)
	*(5)Rear po	
	(3) Rout po	R – Reflective
		F – Transflective
		T – Transmissive
	*(6)Temper	

SPEC. REV.09 PAGE 2 OF 16

N – Normal W– Extended

6 – 6 O'clock 2 – 12 O'clock 3 – 3 O'clock 9 – 9 O'clock

*(8)---Special code for other requirements (Can be omitted if not used)

T – Touch panel (Analog) P – Touch panel (Digital)

*(7)---Viewing direction

GENERAL DESCRIPTION

Display mode : 128 x 64 dots, graphic COB LCD module

Interface : 8-bit parallel

Driving method : 1/64 duty, 1/9 bias

Controller IC : Avant Electronics SBN0064G or equivalent

For the detailed information, please refer to the IC specifications.

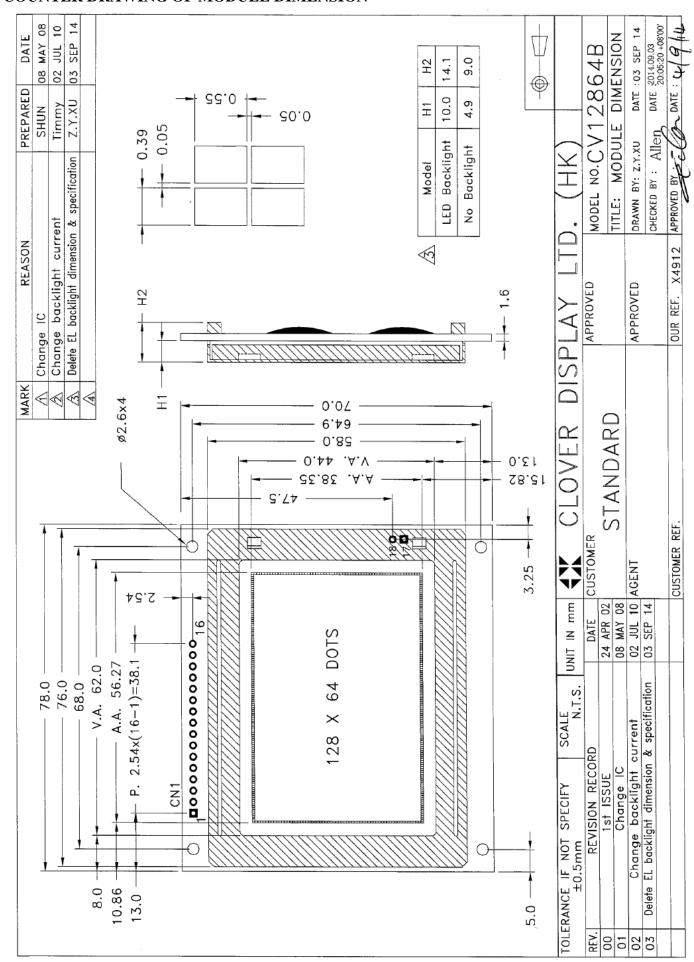
MECHANICAL DIMENSIONS

Item	Dimension		Unit	Item	Dimension		Unit
Outline Dimension		.0(W)x (H1/H2)	mm	Dot Pitch	0.44(L)x0.6	50(W)	mm
Viewing Area	62.0(L)x44	.0(W)	mm	Dot Size	0.39(L)x0.5	0.39(L)x0.55(W)	
No Backlight (N)	H1	4.9	mm	Side Backlight (L)	H1	10.0	mm
	H2	9.0	mm		H2	14.1	mm
Array Backlight (M)	H1	10.0	mm				
	H2	14.1	mm				

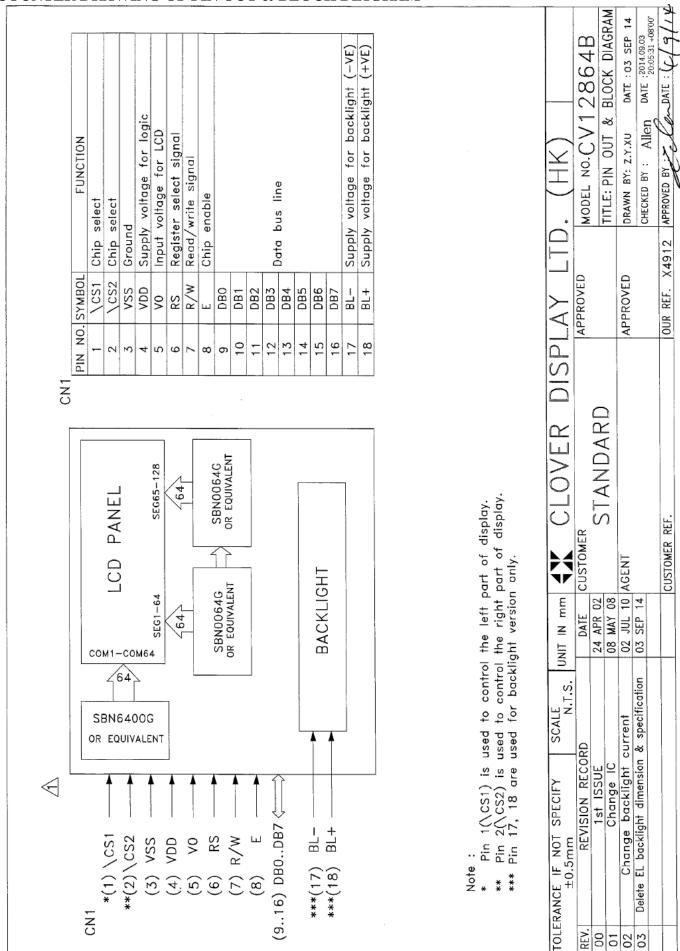
CONNECTOR PIN ASSIGNMENT

Pin No.	Symbol	Function	Pin No.	Symbol	Function
1	\CS1	Chip select *	10	DB1	Data bus line
2	\CS2	Chip select **	11	DB2	Data bus line
3	VSS	Ground	12	DB3	Data bus line
4	Vdd	D Supply voltage for logic		DB4	Data bus line
5	V0	Input voltage for LCD	14	DB5	Data bus line
6	RS	Register select signal	15	DB6	Data bus line
7	R/W	R/W Read/write signal		DB7	Data bus line
8	Е	E Chip enable		BL-	Supply voltage for backlight (-VE)
9	DB0	Data bus line	*** 18	BL+	Supply voltage for backlight (+VE)

Note:


SPEC. REV.09 PAGE 3 OF 16

^{* :\}CS1 is used to control the left part of display screen.


^{**: \}CS2 is used to control the right part of display screen.

^{*** :} Pin 17, 18 are used for backlight version only

COUNTER DRAWING OF MODULE DIMENSION

COUNTER DRAWING OF PIN OUT & BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS

ELECTRICAL CHAR	LECTRICAL CHARACTERISTICS								Conditions: VSS=0V, @Ta=25°C			
Item	Symbol	MIN.	TYP.	MAX.	Unit	Item	Symbol	MIN.	TYP.	MAX	Unit	
Supply Voltage for Logic	Vdd	4.75	5.0	5.25	V	"H"Level Input Voltage	VIH	VDD-2.2	_	VDD	V	
Supply Current for Logic	Idd	_	2.50	3.20	mA	"L"Level Input Voltage	VIL	0	_	0.8	V	
Input voltage for LCD(*)	VO	-4.03	-3.6	-3.17	V	_	_	_	_	_	_	

Note(*):The corresponding LCD voltage = VDD-VO, is $8.6V\pm5\%$ for optimum contrast.

Side Backlight:

Constant voltage driving:

Item	Symbol	MIN.	TYP.	MAX.	Unit	Condition
White Backlight current	${ m I}_{ m BL}$	51	60	69	mA	$V_{\rm BL} = 3.2 \rm V$
Blue Backlight current	${ m I}_{ m BL}$		80	100	mA	$V_{\rm BL} = 3.2 \rm V$

Array Backlight:

Constant current driving:

Item	Symbol	MIN.	TYP.	MAX.	Unit	Condition
Yellow Green Backlight voltage	$V_{\rm BL}$	3.85	4.05	4.25	V	$I_{BL} = 240 \text{mA}$

ABSOLUTE MAXIMUM RATINGS

Please make sure not to exceed the following maximum rating values under the worst application conditions

Item	Symbol	Rating (for normal temperature)	Rating (for wide temperature)	Unit
Supply Voltage	Vdd	-0.3 to 7.0	-0.3 to 7.0	V
Input Voltage	VT	-0.3 to VDD 0.3	-0.3 to VDD 0.3	V
Operating Temperature	Topr	0 to 50	-20 to 70	$^{\circ}\mathbb{C}$
Storage Temperature	Tstg	-10 to 60	-30 to 80	$^{\circ}\mathbb{C}$

SPEC. REV.09 PAGE 6 OF 16

INSTRUCTIONS TABLE

Setting of the data bus for programming the Display ON/OFF Register

D7(MSB)	D6	D5	D4	D3	D2	D1	D0(LSB)
0	0	1	1	1	1	1	D0

When D0=1, the code is 3F(Hex) and the display is turned ON. When D0=0, the code is 3E(Hex) and the display is turned OFF.

The setting of the data bus for programming the Display Start Line Register

D7(MSB)	D6	D5	D4	D3	D2	D1	D0(LSB)
1	1	A5	A4	A3	A2	A1	A0

 $A5 \sim A0$ are Display Start Line address bits and can be programmed with a value in the range from 0 to 63. Therefore, the code can be from 1100 0000 (C0 Hex) to 1111 1111 (FF Hex).

The setting of the data bus for programming the Page Address Register

D7(MSB)	D6	D5	D4	D3	D2	D1	D0(LSB)
1	0	1	1	1	A2	A1	A0

A2, A1 and A0 are page address bits and can be programmed with a value in the range from 0 to 7. A2 A1 A0=000 selects Page 0; A2 A1 A0=001 selects Page 1; A2 A1 A0=010 selects Page 2, and A2 A1 A0=011 selects Page 3...etc. Therefore, the code can be from 1011 1000 (B8 Hex) to 1011 1111 (BF Hex).

The setting of the data bus for programming the Column Address Register

D7(MSB)	D6	D5	D4	D3	D2	D1	D0(LSB)
0	1	A5	A4	A3	A2	A1	A0

A5~A0 are column address bits and can be programmed with a value in the range from 0 to 63. Therefore, the code can be from 0100 0000 (40 Hex) to 0111 1111 (7F Hex).

The Status Register bit allocation

D7(MSB)	D6	D5	D4	D3	D2	D1	D0(LSB)
BUSY	0	ON/OFF	RESET	0	0	0	0

The Status Register bit description

Bit	Description				
BUSY	BUSY=1 indicates that the SBN0064G is currently busy and can not accept new code or data. The SBN0064G is executing an internal operation.				
	BUSY=0 indicates that the SBN0064G is not busy and is ready to accept new code or data.				
ON/OFF	The ON/OFF bit indicates the current of status of display.				
	If ON/OFF=0, the display has been turned ON.				
	If ON/OFF=1, the display has been turned OFF.				
Note that the polarity of this bit is inverse to that of the Display ON/OFF Register.					
RESET RESET=1 indicates that the SBN0064G is currently in the process of being reset.					
	RESET=0 indicates that the SBN0064G is currently in normal operation.				

READ/WRITE operation

TELEST THE OPERATION									
Operation	Operation DATA							Description	
	D7 D6 D5 D4 D3 D2 D1 D0				D2	D1	D0		
Write Display Data	Data to be written into the Display Data Memory.					e Disp	olay D	ata	Write a byte of data to the Display Data Memory. The data to be written is put on the data bus by the host microcontroller.
Read Display Data	Data read from the Display Data Memory output latch.			ta		Read a byte of data from the Display Data Memory. The data read from the internal 8-bit output latch (refer to Fig. 12) appears on the data bus. A dummy read is needed to get correct value.			

SPEC. REV.09 PAGE 7 OF 16

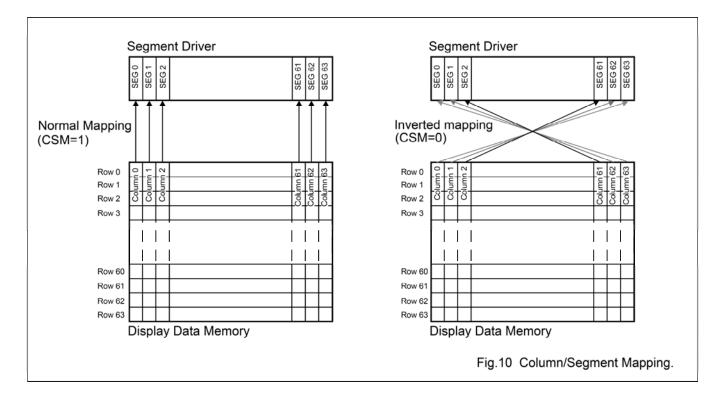
INITIALIZATION METHOD

The module will automatically perform initialization using internal reset circuit when power is turned on. The following instructions are executed during initialization.

- 1. Display OFF
- 2. Set display start line register line 0.

While reset is proceeding, no instruction except status read can be accepted. Therefore, execute other instructions after making sure that DB4 (clear RESET) and DB7 (ready) by status read instruction.

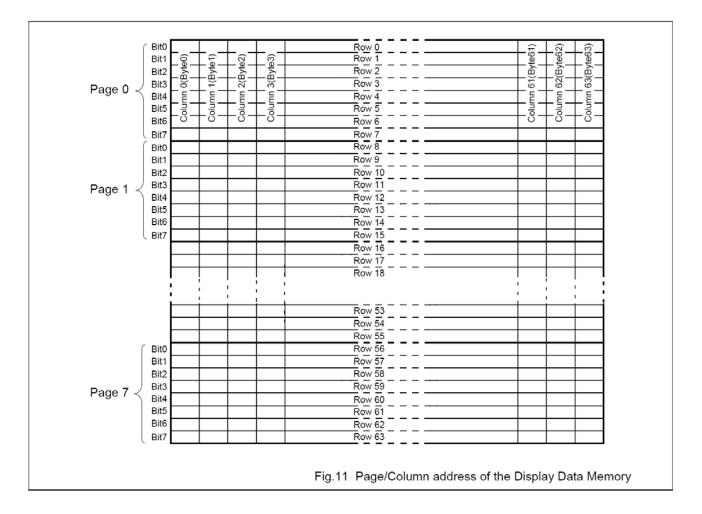
SPEC. REV.09 PAGE 8 OF 16


Mapping between Memory Columns and Segments

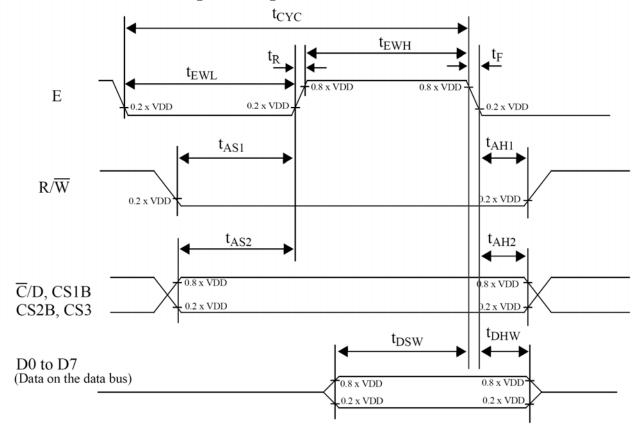
The mapping relation between the column outputs of the Display Data Memory and the Segment outputs SEG0~SEG63 is decided by the CSM (Column/Segment Mapping) input.

If CSM input is connected to HIGH, then data from column 0 of the Display Data Memory is output from SEG0. This type of mapping is called *normal mapping*.

If CSM input is connected to LOW, then the data from column 63 of the Display Data Memory is output from SEG0. This type of mapping is called *inverted mapping*.


By use of this input, the flexibility of component placement and routing on a PCB can be increased.

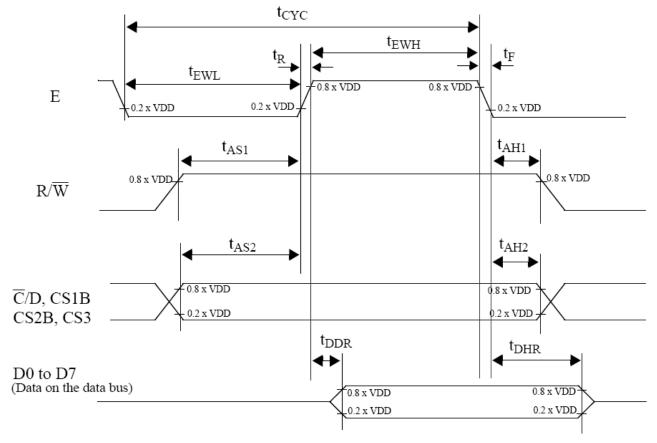
SPEC. REV.09 PAGE 9 OF 16


Display Data Memory Page and the Page Address Register

The Display Data Memory is divided into 8 pages: Page 0 ~ Page 7, with each page having 64 bytes in horizontal direction. Page 0 is from Row 0 to Row 7, Page 1 from Row 8 to Row 15, Page 2 from Row 16 to Row 23, and Page 3 from Row 24 to Row 31,...etc, as shown in Fig 11. When the host microcontroller intends to perform a READ/WRITE operation to the Display Data Memory, it has to program the Page Address Register to indicate which page it intends to access.

SPEC. REV.09 PAGE 10 OF 16

Microcontroller interface timing for writing to the SBN0064G


AC timing for writing to the SBN0064G

 V_{DD} = 5 V ±10%; V_{SS} = 0 V; T_{amb} = -20 °C to +75°C.

symbol	parameter	min.	max.	test conditions	unit
t _{CYC}	Enable (E) cycle time	1000			
t _{EWL}	Enable (E) LOW width	450			1
t _{EWH}	Enable (E) HIGH width	450			1
t _R	Enable (R) rise time		20		
t _F	Enable (F) fall time		20		
t _{AS1}	Write set-up time	140			ns
t _{AH1}	Write hold time	10]
t _{AS2}	C/D, CS1B, CS2B, CS3 set-up time	140			1
t _{AH2}	C/D, CS1B, CS2B, CS3 hold time	10			1
t _{DSW}	Data setup time (on the data bus)	200		The loading on	1
t _{DHW}	Data hold time (on the data bus)	10		the data bus is shown in Fig. 18.	

SPEC. REV.09 PAGE 11 OF 16

Microcontroller interface timing for reading from the SBN0064G

AC timing for reading from the SBN0064G

 $V_{DD} = 5 \text{ V} \pm 10\%$; $V_{SS} = 0 \text{ V}$; $T_{amb} = -20 \text{ °C to } +75 \text{°C}$.

symbol	parameter	min.	max.	test conditions	unit
t _{CYC}	Enable (E) cycle time	1000			
t _{EWL}	Enable (E) LOW width	450]
t _{EWH}	Enable (E) HIGH width	450]
t _R	Enable (R) rise time		20]
t _F	Enable (F) fall time		20]
t _{AS1}	READ set-up time	140			ns
t _{AH1}	READ hold time	20]
t _{AS2}	C/D, CS1B, CS2B, CS3 set-up time	140			1
t _{AH2}	C/D, CS1B, CS2B, CS3 hold time	10			1
t _{DDR}	Data delay time (on the data bus)	320		The loading on	1
t _{DHR}	Data hold time (on the data bus)	20		the data bus is shown in Fig. 18.	

SPEC. REV.09 PAGE 12 OF 16

THE RESET CIRCUIT

Registers and their states after hardware RESET

The SBN0064G has 5 registers. Four of them must be programmed by the host microcontroller after hardware reset. The Status Register can be read by the host microcontroller to check the current status of the SBN0064G.

The registers and their states after RESET is given in Table 5.

Registers and their states after RESET

Register Name	Description	States after RESET
Display ON/OFF Register	The Display ON/OFF Register is a 1-bit register. After RESET, its value is LOW and, therefore, the LCD display is turned OFF.	0
Display Start Line Register	The Display Start Line Register is a 6-bit register. After RESET, its value is 00 0000 and, therefore, Row 0 of the Display Data Memory is mapped to COM0 of LCD panel.	00 0000
Page Address Register	The Page Address Register is a 3-bit register. It point to a page of the Display Data Memory.	xxx
Column Address Register	The Column Address Register is a 6-bit register.	xx xxxx
Status Register	The Status Register shows the current state of the SBN0064G. It is a 3-bit register, with each bit showing the status of a programmed function.	0010 0000

SPEC. REV.09 PAGE 13 OF 16

ELECTRO-OPTICAL CHARACTERISTICS

MEASURING CONDITION: POWER SUPPLY = VOP / 64 Hz

TEMPERATURE = 23 ± 5 °C RELATIVE HUMIDITY = 60 ± 20 %

ITEM	SYMBOL	UNIT	TYP. TN/ TYP. STN
RESPONSE TIME	Ton	ms	220
	Toff	ms	280
CONTRAST RATIO	Cr	-	12
	V3:00	0	40
VIEWING ANGLE (6 O'clock)	V _{6:00}	0	70
(Cr ≥ 2)	V9:00	0	40
	V12:00	0	50

THE ELECTRO-OPTICAL CHARACTERISTICS ARE MEASURED VALUE BUT NOT GUARANTEED ONES.

RELIABILITY OF LCD MODULE

	TEST CONDITION	TEST CONDITION	
ITEM	FOR NORMAL TEMPERATURE	FOR WIDE TEMPERATURE	TIME
High temperature operating	50°C	70°C	240 hours
Low temperature operating	0°C	-20°C	240 hours
High temperature storage	60°C	80°C	240 hours
Low temperature storage	-10°C	-30°C	240 hours
Temperature-humidity storage	40°C 90% R.H.	60°C 90% R.H.	96 hours
Temperature cycling	-10°C to 60°C	-30°C to 80°C	5 cycles
	30 Min Dwell	30 Min Dwell	
Vibration Test at LCM Level	Freq 10-55 Hz	Freq 10-55 Hz	
	Sweep rate: 10-55-10 at 1 min	Sweep rate: 10-55-10 at 1 min	
	Sweep mode Linear	Sweep mode Linear	_
	Displacement: 2 mm p-p	Displacement: 2 mm p-p	
	1 Hour each for X, Y, Z	1 Hour each for X, Y, Z	

SPEC. REV.09 PAGE 14 OF 16

QUALITY STANDARD OF LCD MODULE

1.0	Sampling Method	Sampling Method							
	Sampling Plan : MIL STD 105 E								
	Class of AQL : Level II/Single Sampling								
	Critical: 0.25% Major 0.65% Minor 1.5%								
2.0	Defect Group	Failure Category	Failure Reasons						
	Critical Defect	Malfunction	Open						
	0.25%(AQL)		Short						
			Burnt or dead component						
			Missing part/improper part P.C.B.						
			Broken						
	Major Defect	Poor Insulation	Potential short						
	0.65%(AQL)		High current						
			Component damage or scratched						
			or Lying too close improper coating						
		Poor Conduction	Damage joint						
			Wrong polarity						
			Wrong spec. part						
			Uneven/intermittent contact						
			Loose part						
			Copper peeling						
			Rust or corrosion or dirt's						
	Minor Defect	Cosmetic Defect	Minor scratch						
	1.5%(AQL)		Flux residue						
			Thin solder						
			Poor plating						
			Poor marking						
			Crack solder						
			Poor bending						
			Poor packing						
			Wrong size						

SPEC. REV.09 PAGE 15 OF 16

HANDLING PRECAUTIONS

(1) CAUTION OF LCD HANDLING & CLEANING

The polarizing plate on the surface of the panel is made from organic substances. Be very careful for chemicals not to touch the plate or it leads the polarizing plate to deteriorate.

If the use of a chemical is unavoidable, wipe the panel lightly with soft materials, such as gauze and absorbent cotton, soaked in a solvent.

*Usable solvent: Alcohol (ethanol, IPA and the like)

Avoid wiping with a dry cloth, since it could damage the surface of the polarizing plate and others.

(2) CAUTION AGAINST STATIC CHARGE

The LCD modules use CMOS LSI drivers, so customers are recommended that any unused input terminal would be connected to V_{DD} or V_{SS} , do not input any signals before power is turned on, and ground your body, work/assembly areas, assembly equipment to protect against static electricity.

(3) PACKAGING

Avoid intense shock and falls from a height and do not operate or store them exposed to direct sunshine or high temperature/humidity for long periods.

(4) CAUTION FOR OPERATION

The viewing angle can be adjusted by varying the LCD driving voltage VO.

Driving voltage should be kept within specified range, excess voltage shortens display life.

Response time increases with decrease in temperature.

Display may turn black or dark Blue at temperature above its operational range; this is however not destructive and the display will return to normal once the temperature falls back to range.

Mechanical disturbance during operation (such as pressing on the viewing area) may cause the segments to appear "fractured". They will recover once the display is turned off.

Condensation at terminals will cause malfunction and possible electrochemical reaction. Relative humidity of the environment should therefore be kept below 60%.

(5) SAFETY

Liquid crystal may leak out of a damaged LCD, it is recommended to wash off the liquid crystal by using solvents such as acetone or ethanol and should be burned up later.

If any liquid leaks out of a damaged glass cell comes in contact with your hands, wash it off with soap and water immediately.

WARRANTY

CLOVER will replace or repair any of her LCD module in accordance with her LCD specification for a period of one year from date of shipment. The warranty liability of Clover is limited to repair and/or replacement. Clover will not be responsible for any subsequent or consequential event.

SPEC. REV.09 PAGE 16 OF 16

^{*}Appropriate solvent: Ketones, ethyl alcohol

SPECIFICATION REVISION RECORD

Revision No.	Description	Date(DD/MM/YY)
08	Update Counter Drawing to 02 on page 3-4 & Update Electrical Characteristics on page 5	16/08/10
09	Delete Mechanical Dimensions of EL& CCFL Backlight on page 3 Update Counter Drawing to 03 on page 4-5 Delete Electrical Characteristics of EL Backlight on page 6	04/09/14

SPEC. REV.09 PAGE 17 OF 16