

CLOVER DISPLAY LTD.

LCD MODULE SPECIFICATION

Model: CG128128A - _ _ - _ - _ - _

Revision	00
Engineering	Timmy
Date	20 July 2011
Our Reference	X9044

ADDRESS: 1st FLOOR, EFFICIENCY HOUSE, 35 TAI YAU STREET, SAN PO KONG,

KOWLOON, HONG KONG.

TEL : (852) 2341 3238 (SALES OFFICE) (852) 2342 8228 (GENERAL OFFICE)

FAX : (852) 2357 4237 (SALES OFFICE)

E-MAIL : <u>cdl@cloverdisplay.com</u>

URL : http://www.cloverdisplay.com

MODE OF DISPLAY

Display mode STN: Yellow green Grey Blue (negative) FSTN positive FSTN negative	☐ Transflect	lective type			
LCD MODULE NUMBER	NOTATION:				
CG128128A- N N - S R	- <u>N</u> <u>6</u> - <u>T</u>	*(1)Model *(2)Backlig *(3)Backlig *(4)Display *(5)Rear po *(6)Temper	ght type N - No backlight E - EL backlight L - Side-lited LED backlight M - Array LED backlight C - CCFL ght color N - No backlight A - Amber B - Blue O - Orange W - White Y - Yellow green y mode T - TN V - TN (Negative) S - STN Yellow green G - STN Grey B - STN Blue (Negative) F - FSTN N - FSTN (Negative) olarizer type R - Reflective F - Transflective T - Transmissive rature range N - Normal W - Extended		
			9 – 9 O'clock I code for other requirements be omitted if not used)		

SPEC. REV.00 PAGE 1 OF 23

GENERAL DESCRIPTION

Display mode : 128 X 128 dots, Graphic COG LCD module

Interface : 8-bit parallel / serial / I^2C

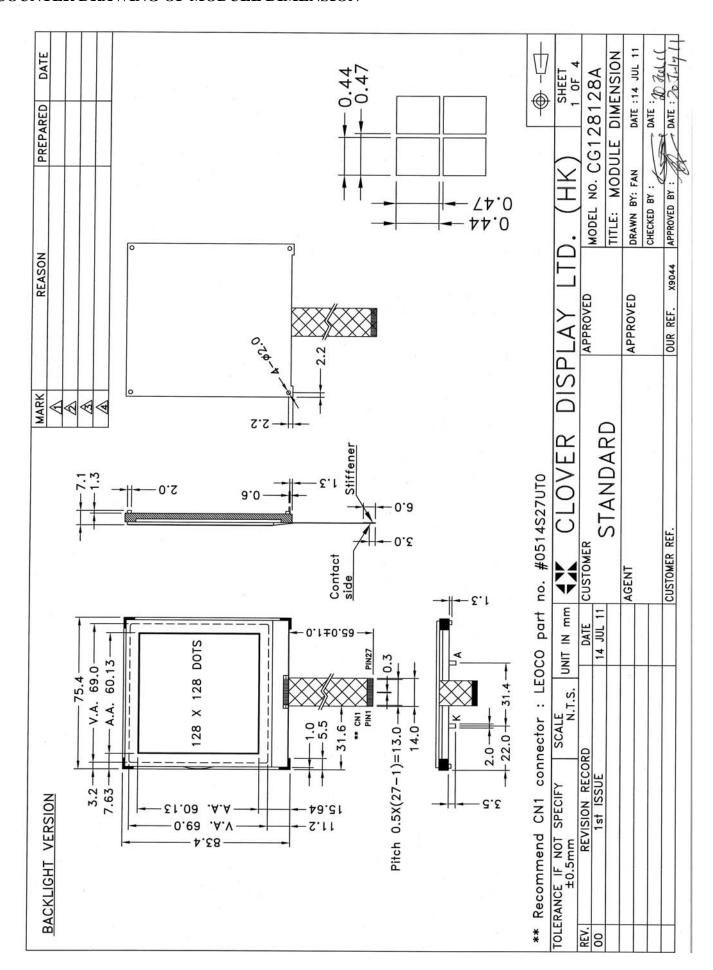
Driving method : 1/128 duty, 1/12 bias

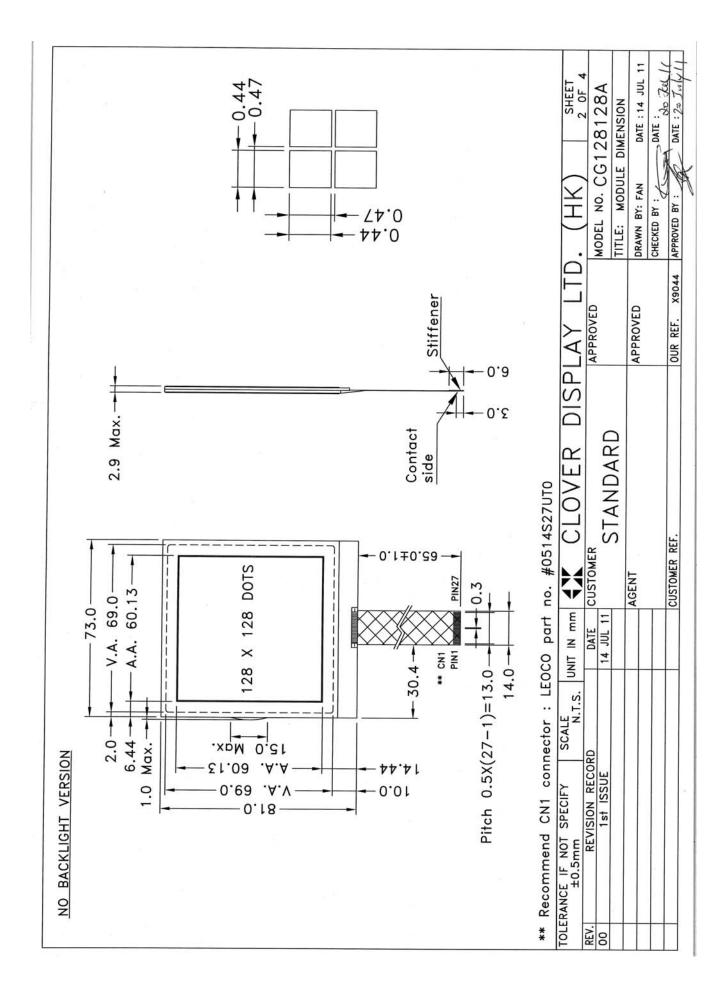
Controller IC : UC1617w or equivalent

For the detailed information, please refer to the IC specifications.

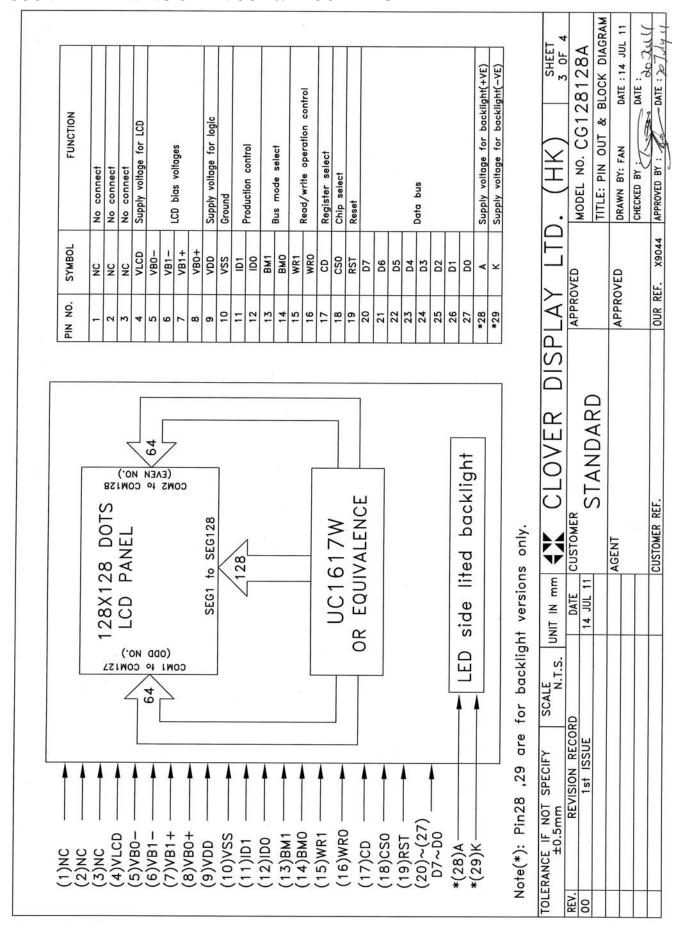
MECHANICAL DIMENSIONS

Item	Dimension	Unit	Item	Dimension	Unit
Outline Dimension		mm	Viewing Area	69.0(L)x69.0(W)	mm
No Backlight	73.0(L) x 81.0(W) x 2.9MAX.(H)	mm	Dot pitch	0.47(L)x0.47(W)	mm
LED Sided Backlight	75.4(L) x 83.4(W) x 7.1(H)	mm	Dot size	0.44(L)x0.44(W)	mm


CONNECTOR PIN ASSIGNMENT


Pin No.	Symbol	Function	Pin No.	Symbol	Function
1	NC	No connect	15	WR1	
2	NC	No connect	16	WR0	Read/write operation control
3	NC	No connect	17	CD	Register select
4	VLCD	Supply voltage for LCD	18	CS0	Chip select
5	VB0-		19	RST	Reset
6	VB1-	LCD bias voltages	20	D7	
7	VB1+	8	21	D6	
8	VB0+		22	D5	
9	VDD	Supply voltage for logic	23	D4	
10	VSS	Ground	24	D3	Data bus
11	ID1	Production control	25	D2	
12	ID0	Production control	26	D1	
13	BM1	Dua mada salaat	27	D0	
14	BM0	Bus mode select	*28	A	Supply voltage for backlight (+VE)
			*29	K	Supply voltage for backlight (-VE)

Note (*) : Pin 28, 29 are for backlight versions only.

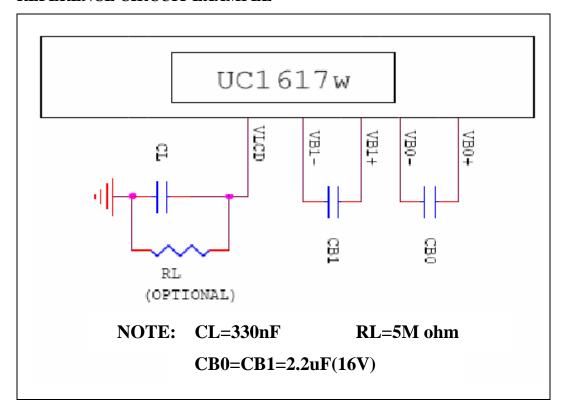

SPEC. REV.00 PAGE 2 OF 23

COUNTER DRAWING OF MODULE DIMENSION

COUNTER DRAWING OF PIN OUT & BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS

	t	1	t	t	t
Item	Symbol	MIN.	TYP.	MAX.	Unit
Supply Voltage for Logic	VDD	3.05	3.3	3.55	V
Supply Current for Logic	IDD	_	1.50	2.25	mA
Operating Voltage for LCD (*)	VLCD	11.8	12.5	13.1	V
'High' Level Input Voltage	VIH	0.8VDD	_	_	V
'Low' Level Input Voltage	VIL	_	_	0.2VDD	V


Note (*): There is tolerance in optimum LCD driving voltage during production and it will be within the specified range.

Side-lited LED backlight

Constant voltage driving:

Item	Symbol	MIN.	TYP.	MAX.	Unit	Condition
White color	I_{BL}	_	60	80	mA	$V_{BL} = 3.3V$
Blue color	I_{BL}	_	60	80	mA	$V_{BL} = 3.3V$

REFERENCE CIRCUIT EXAMPLE

ABSOLUTE MAXIMUM RATINGS

Please make sure not to exceed the following maximum rating values under the worst application conditions

T TOUSE THANKE BUTE HOT TO CA	ccca the followin	ig maximam rating varaes ander the	orst application conditions	
Item	Symbol	Rating (for normal temperature)	Rating (for wide temperature)	Unit
Supply Voltage	Vdd	-0.3to4	-0.3to4	V
Input Voltage	VT	-0.4 to VDD +0.5	-0.4 to VDD +0.5	V
Operating Temperature	Topr	0 to 50	-20 to 70	$^{\circ}\!\mathbb{C}$
Storage Temperature	Tstg	-10 to 60	-30 to 80	$^{\circ}\mathbb{C}$

SPEC. REV.00 PAGE 6 OF 23

INSTRUCTIONS TABLE

COMMAND SUMMARY

The following is a list of host commands supported by UC1617w

C/D: 0: Control, 1: Data W/R: 0: Write Cycle, 1: Read Cycle

Useful Data bits– Don't Care

	Command	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Action	Default
1	Write Data Byte	1	0	#	#	#	#	#	#	#	#	Write 1 byte	N/A
2	Read Data Byte	1	1	#	#	#	#	#	#	#	#	Read 1 byte	N/A
				1	MX	MY	WA	DE	WS	MD	MS	Get {Status, Ver,	
3	Get Status	0	1	V	er				PMO[5:0]			PMO, Product Code,	N/A
				F	roduc	t Cod	е		ID	М	_	PID, MID}	
4	Set Page_C Address	0	0	0	0	0	#	#	#	#	#	Set CA[4:0]	0H
5	Set Temp. Compensation	0	0	0	0	1	0	0	1	#	#	Set TC[1:0]	00b
6	Set Panel Loading	0	0	0	0	1	0	1	0	#	#	Set PC[1:0]	10b
7	Set Pump Control	0	0	0	0	1	0	1	1	#	#	Set PC[3:2]	11b
8	Set Adv. Program Control	0	0	0	0	1	1	0	0	R	R	Set APC[R][7:0],	N/A
Ľ	(double-byte command)	0	0	#	#	#	#	#	#	#	#	R = 0, 1 or 2	IN//A
9	Set Scroll Line LSB	0	0	0	1	0	0	#	#	#	#	Set SL[3:0]	0H
Ľ	Set Scroll Line MSB	0	0	0	1	0	1	-	#	#	#	Set SL[6:4]	0H
10	Set Row Address LSB	0	0	0	1	1	0	#	#	#	#	Set RA[3:0]	00H
L	Set Row Address MSB	0	0	0	1	1	1	-	#	#	#	Set RA[6:4]	00H
11	Set V _{BIAS} Potentiometer (double-byte command)	0	0	1 #	0 #	0 #	0 #	0 #	0 #	0 #	1 #	Set PM[7:0]	4EH
12	Set Partial Display Control	0	0	1	0	0	0	0	1	#	#	Set LC[9:8]	00b: Disable
13	Set RAM Address Control	0	0	1	0	0	0	1	#	#	#	Set AC[2:0]	001b
14	Set Fixed Lines	0	0	1 #	0 #	0 #	1 #	0 #	0 #	0 #	0 #	Set {FLT, FLB}	0
15	Set Line Rate	0	0	1	0	1	0	0	0	#	#	Set LC[4:3]	00b
16	Set All-Pixel-ON	0	0	1	0	1	0	0	1	0	#	Set DC[1]	0b
17	Set Inverse Display	0	0	1	0	1	0	0	1	1	#	Set DC[0]	0b
18	Set Display Enable	0	0	1	0	1	0	1	1	#	#	Set DC[3:2]	10b
19	Set LCD Mapping Control	0	0	1	1	0	0	0	#	#	#	Set LC[2:0]	000b
20	Set N-Line Inversion	0	0	1 -	1 -	0 -	0 -	1 #	0 #	0 #	0 #	Set NIV[3:0]	6H
21	Set LCD Gray Shade	0	0	1	1	0	1	0	#	#	#	Set LC[7:5]	001b
22	System Reset	0	0	1	1	1	0	0	0	1	0	System Reset	N/A
23	NOP	0	0	1	1	1	0	0	0	1	1	No operation	N/A
24	Set Test Control	0	0	1	1	1	0	0	1		Т	For testing only.	N/A
	(double-byte command)	0	0	#	#	#	#	#	#	#	#	Do not use.	
25	Set LCD Bias Ratio	0	0	1	1	1	0	1	0	#	#	Set BR[1:0]	11b: 11
26	Reset Cursor Update Mode	0	0	1	1	1	0	1	1	1	0	AC[3]=0, CA=CR	AC[3]=0
27	Set Cursor Update Mode	0	0	1	1	1	0	1	1	1	1	AC[3]=1, CR=CA	AC[3]=1
28	Set COM End	0	0	1 -	1 #	1 #	1 #	0 #	0 #	0 #	1 #	Set CEN[6:0]	127
29	Set Partial Display Start	0	0	1 -	1 #	1 #	1 #	0 #	0 #	1 #	0 #	Set DST[6:0]	0
30	Set Partial Display End	0	0	1 -	1 #	1 #	1 #	0 #	0 #	1 #	1 #	Set DEN[6:0]	127

SPEC. REV.00 PAGE 7 OF 23

	Command	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Actio	n	Default	
31	Set Window Program Starting Page_C Address	0	0	1	1 -	1	1 #	0 #	1 #	0 #	0 #		Set WPC0	0	
32	Set Window Programming Starting Row Address	0	0	1 -	1 #	1 #	1 #	0 #	1 #	0 #	1 #	Shared with	Set WPP0	0	
33	Set Window Programming Ending Page_C Address	0	0	1 -	1 -	1 -	1 #	0 #	1 #	1 #	0 #	MTP commands	Set WPC1	31	
34	Set Window Programming Ending Row Address	0 0	00	1 -	1 #	1 #	1 #	0 #	1 #	1 #	1 #		Set WPP1	127	
35	Enable window program	0	0	1	1	1	1	1	0	0	#	Set AC	0: Disable		
36	Set MTP Operation control	0	0 0	1 -	0 -	1 #	1 #	1 #	0 #	0 #	0 #	Set MTP0	10H		
37	Set MTP Write Mask	0	0	1 #	0 #	1 #	1 #	1 #	0 #	0 #	1 #	Set MTPN	Λ[7:0]	0	
38	Set V _{MTP1} Potentiometer	0	0	1 #	1 #	1 #	1 #	0 #	1 #	0 #	0 #		Set MTP1		
39	Set V _{MTP2} Potentiometer	0	0	1 #	1 #	1 #	1 #	0 #	1 #	0 #	1 #	Shared with	Set MTP2	N/A	
40	Set MTP Write Timer	0	0	1 #	1 #	1 #	1 #	0 #	1 #	1 #	0 #	Window Program commands	Set MTP3	N/A	
41	Set MTP Read Timer	0	0	1 #	1 #	1 #	1 #	0 #	1 #	1 #	1 #	Communico	Set MTP4		

Notes:

- Any bit patterns other than the commands listed above may result in undefined behavior.
- The interpretation of commands (37)~(41) depends on register MTPC[3].
- Commands (38)~(41) are shared with commands (31)~(34) and have exactly the same code. When MTPC[3]=0, commands (38)~(41) are interpreted as Window Programming commands. When MTPC[3]=1, they are the MTP Control commands.
- MTPM and PM are actually the same register. Only one of the commands (37 or 11) is valid at any time, and it is determined by MTPC[3].
- After MTP-ERASE or MTP-PROGRAM operation, before resuming normal operation, please always

 a) Remove TST4 power source,
 b) Do a full V_{DD} ON-OFF-ON cycle.

SET PAGE_C ADDRESS

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Page_C Address LSB CA[4:0]	0	0	0	0	0	CA4	CA3	CA2	CA1	CA0

Set SRAM page c address for read/write access. Each CA corresponds to one individual SEG electrode.

CA value range: 0~31

SET TEMPERATURE COMPENSATION

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Temperature Comp. TC[1:0]	0	0	0	0	1	0	0	1	TC1	TC0

Set V_{BIAS} temperature compensation coefficient (%-per-degree-C)

Temperature compensation curve definition:

SPEC. REV.00 PAGE 8 OF 23

SET PUMP CONTROL

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Pump Control PC[3:2]	0	0	0	0	1	0	1	1	PC3	PC2

Set PC[3:2] to program the build-in charge pump stages.

Pump control definition:

00b=External V_{LCD}

11b= Internal V_{LCD} (9X pump, standard)

SET ROW ADDRESS

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Row Address RA [3:0]	0	0	0	1	1	0	RA3	RA2	RA1	RA0
Set Row Address RA [6:4]	0	0	0	1	1	1	ı	RA6	RA5	RA4

Set SRAM row Address for read/write access.

Possible value = 0~127

SET VBIAS POTENTIOMETER

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set V _{BIAS} Potentiometer. PM [7:0]	0	0	1	0	0	0	0	0	0	1
(Double-byte command)	0	0	PM7	PM6	PM5	PM4	РМ3	PM2	PM1	PM0

Program V_{BIAS} Potentiometer (PM[7:0]). See section LCD Voltage Setting for more detail.

Effective range: 0 ~ 193

SET RAM ADDRESS CONTROL

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set AC [2:0]	0	0	1	0	0	0	1	AC2	AC1	AC0

Program registers AC[2:0] for RAM address control.

AC[0]: WA, Automatic page c/row wrap around.

0: CA or RA (depends on AC[1]= 0 or 1) will stop increasing after reaching boundary

1: CA or RA (depends on AC[1]= 0 or 1) will restart, and RA or CA will increase by one.

AC[1]: Auto-Increment order

0 : page c (CA) increase (+1) first until CA reaches CA boundary, then RA will increase by (+/-1).

1: row (RA) increase (+/-1) first until RA reach RA boundary, then CA will increase by (+1).

AC[2]: RID, Row Address (RA) auto increment direction ($\mathbf{0}/1 = +/-1$)

When WA=1 and CA reaches CA boundary, PID controls whether row Address will be adjusted by +1 or -1.

AC[2:0] controls the auto-increment behavior of CA and RA. When Window Program is enabled (AC[4]=ON), see Command Description (31) \sim (35) for more details. When Window Program is disabled (AC[4]=OFF), the behavior of CA, RA auto-increment is the same as WPC[1:0] and WPP[1:0] values are the default values and AC[4]=ON.

SPEC. REV.00 PAGE 9 OF 23

SET LINE RATE

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Line Rate LC [4:3]	0	0	1	0	1	0	0	0	LC4	LC3

Program LC [4:3] for line rate setting (Line-Rate = Frame-Rate * Mux-Rate). The line rate is automatically scaled down by 2/3, 1/2, 1/3 and 1/4 at Mux-Rate = 85, 64, 43, and 32.

The followings are line rates at Mux Rate = 86~128:

00b: 14.2 Klps 01b: 17.3 Klps 10b: 21.1 Klps 11b: 25.7 Klps

(Klps: Kilo-Line-per-second)

while the followings are line rates in On/Off mode:

00b: 5.7 Klps 01b: 7.0 Klps 10b: 8.5 Klps 11b: 10.4 Klps

SET LCD MAPPING CONTROL

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set LCD Mapping Control LC [2:0]	0	0	1	1	0	0	0	MY	MX	LC0

This command is used for programming LC[2:0] for COM (row) mirror (MY), SEG (page c) mirror (MX).

LC2 controls Mirror Y (MY): MY is implemented by reversing the mapping order between RAM and COM electrodes. The data stored in RAM is not affected by MY command. MY will have immediate effect on the display image.

LC1 controls Mirror X (MX): MX is implemented by selecting the CA or 31-CA as write/read (from host interface) display RAM page c address so this function will only take effect after rewriting the RAM data.

LC0 controls whether the soft icon section (0~2xFL) is display or not during partial display mode.

SYSTEM RESET

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
System Reset	0	0	1	1	1	0	0	0	1	0

This command will activate the system reset. Control register values will be reset to their default values. Data stored in RAM will not be affected.

SET LCD BIAS RATIO

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Bias Ratio BR [1:0]	0	0	1	1	1	0	1	0	BR1	BR0

Bias ratio definition:

SPEC. REV.00 PAGE 10 OF 23

RECOMMENDED INITIAL SETTINGS

System Reset: E2H

Set Temp. compensation: 24H

Set Up LCD Format Specific Parameters ,MX,MY,etc : C4H

Set Line Rate: A3H
Set Pump Control: 2fH
Set LCD Bias Ratio: EAH

LCD Specific Operation Voltage Setting: 81H

Set RAM Address Control: 89H

Set Page_C Address: 00H Set Row Address MSB: 70H Set Row Address LSB: 60H

Set B/W MODE display enable: ADH

SPEC. REV.00 PAGE 11 OF 23

DISPLAY DATA RAM

	ā	0 /	/2	/ 4	9/	0 /	/2	/ 4	9/	0/	/2	/ 4	9/				
Line	Data	10	D3	D5	D7	1	D3	D5	D7	10	D3	90	D7	MY	=0	MY	
Adderss														SL=0	SL=16	SL=0	SL=16
00H														R1	R113	R128	R16
01H														R2	R114	R127	R15
02H														R3	R115	R126	R14
03H				Ш	Ш									R4	R116	R125	R13
04H														R5	R117	R124	R12
05H			$ldsymbol{ldsymbol{ldsymbol{eta}}}$	ᆫ	Ш		Ш				Ш		Ш	R6	R118	R123	R11
06H					Ш									R7	R19	R122	R10
07H		_	\vdash	╙	ш		⊢				\vdash			R8	R120	R121	R9
08H		⊢		⊢	Н		\vdash				Н		Н	R9	R121	R120	R8
09H		┢		┝	Н		\vdash							R10 R11	R122 R123	R119 R118	R7 R6
OAH OBH		⊢	\vdash	⊢	Н		\vdash				Н		Н	R12	R123	R117	R5
0CH		┢		┢	Н		\vdash						H	R13	R125	R116	R4
0DH		┢	\vdash	\vdash	Н		\vdash						Н	R14	R126	R115	R3
0EH				\vdash										R15	R127	R114	R2
0FH					П									R16	R128	R113	R1
10H					П									R17	R1	R112	R128
11H														R18	R2	R111	R127
12H														R19	R3	R110	R126
13H														R20	R4	R109	R125
14H														R21	R5	R108	R124
15H				Ь	Ш		$oxed{oxed}$							R22	R6	R107	R123
16H					Ш		Ш						Ш	R23	R7	R106	R122
17H				Ь	Ш		$ldsymbol{ldsymbol{ldsymbol{ldsymbol{eta}}}$							R24	R8	R105	R121
18H			lacksquare	Ь	Ш		$ldsymbol{ldsymbol{ldsymbol{eta}}}$						Ш	R25	R9	R104	R120
19H		_		<u> </u>	Ш						Ш		Ш	R26	R10	R103	R119
1AH 1BH		⊢		⊢	Н		\vdash						Н	R27 R28	R11 R12	R102 R101	R118 R117
		Pag	ge_C	0		Pag	je_C	1		Pag	ie_C	31					
6CH		\vdash			П								П	R109	R93	R20	R36
6DH				\vdash	Н		Н						Н	R110	R94	R19	R35
6EH														R111	R95	R18	R34
6FH														R112	R96	R17	R33
70H														R113	R97	R16	R32
71H					Ш									R114	R98	R15	R31
72H			$ldsymbol{ldsymbol{ldsymbol{eta}}}$	L	Ш		$oxed{oxed}$						Ш	R115	R99	R14	R30
73H		<u> </u>	\vdash	\vdash	ш	_	Щ			<u> </u>	Щ	L_	Ш	R116	R100	R13	R29
74H		<u> </u>	\vdash	\vdash	Н	_	\vdash		Ш		$\vdash \vdash$		Щ	R117	R101	R12	R28
75H		<u> </u>	\vdash	\vdash	Н	<u> </u>	\vdash			\vdash	\vdash	\vdash	\vdash	R118	R102	R11	R27
76H 77H		\vdash	\vdash	\vdash	Н	-	\vdash		\vdash		\vdash	_		R119 R120	R103 R104	R10	R26
77H 78H		\vdash	\vdash	\vdash	Н	\vdash	\vdash		\vdash		\vdash	\vdash	\vdash	R120 R121	R104 R105	R9 R8	R25 R24
79H		\vdash	\vdash	\vdash	Н		\vdash		\vdash		\vdash	\vdash	Н	R121	R105	R7	R23
7AH				\vdash	Н		\vdash						Н	R123	R107	R6	R22
7BH				\vdash	Н				\vdash		Н		П	R124	R108	R5	R21
7CH				T	П									R125	R109	R4	R20
7DH			Г		П									R126	R110	R3	R19
7EH														R127	R111	R2	R18
7FH														R128	R112	R1	R17
×	0	C1	C2	C3	C4	C5	C6	C7	C8	C125	C126	C127	C128			128 Ml	128 JX
X		28	27	26	25	24	23	22	21	4	3	2	_		•		•
	_	C128	C127	C126	C125	C124	C123	C122	C121	C4	C3	C2	C				

Example: when MX=0, MY=0, SL=0, the corresponding data in SRAM as the pixels shown is:

Row1 Page_C0 ⇒ 11100100b

Row2 Page_C0 ⇒ 00111001b

PARALLEL INTERFACE BUS TIMING CHARACTERISTICS FOR 8080 MODE AC CHARACTERISTICS

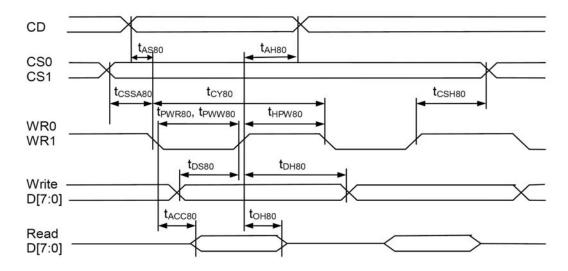


FIGURE 13: Parallel Bus Timing Characteristics (for 8080 MCU)

 $(2.5V \le V_{DD} < 3.3V, Ta = -30 \text{ to } +85^{\circ}C)$

Symbol	Signal	Description	Condition	Min.	Max.	Units
t _{AS80} t _{AH80}	CD	Address setup time Address hold time		0	I	nS
t _{CY80}		System cycle time (read) (write)		170 130	I	nS
t _{PWR80}	WR1	Pulse width (read)		85	_	nS
t _{PWW80}	WR0	Pulse width (write)		65	-	nS
t _{HPW80}	WR0, WR1	High pulse width (read) (write)		85 65	1	nS
t _{DS80} t _{DH80}	D0~D7	Data setup time Data hold time		30 0	Ī	nS
t _{ACC80} t _{OH80}		Read access time Output disable time	C _L = 100pF	_	65 30	nS
t _{CSSA80} t _{CSH80}	CS1/CS0	Chip select setup time Chip select hold time		5 5		nS

 $(1.65V \le V_{DD} < 2.5V, Ta = -30 \text{ to } +85^{\circ}C)$

Symbol	Signal	Description	Condition	Min.	Max.	Units
t _{AS80} t _{AH80}	CD	Address setup time Address hold time		0	-	nS
t _{CY80}		System cycle time (read) (write)		320 270	i — i	nS
t _{PWR80}	WR1	Pulse width (read)		160	1-1	nS
t _{PWW80}	WR0	Pulse width (write)		135		nS
t _{HPW80}	WR0, WR1	High pulse width (read) (write)		160 135	-	nS
t _{DS80}	D0~D7	Data setup time Data hold time		60 0	-	nS
t _{ACC80} t _{OH80}		Read access time Output disable time	C _L = 100pF	_	120 60	nS
t _{CSSA80} t _{CSH80}	CS1/CS0	Chip select setup time Chip select hold time		10 10		nS

SPEC. REV.00 PAGE 13 OF 23

PARALLEL INTERFACE BUS TIMING CHARACTERISTICS FOR 6800 MODE

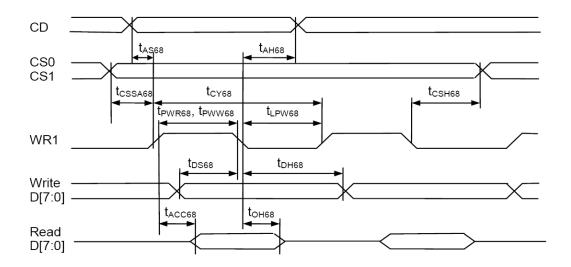


FIGURE 14: Parallel Bus Timing Characteristics (for 6800 MCU)

 $(2.5V \le V_{DD} < 3.3V, Ta = -30 \text{ to } +85^{\circ}C)$

Symbol	Signal	Description	Condition	Min.	Max.	Units
t _{AS68} t _{AH68}	CD	Address setup time Address hold time		0	-	nS
t _{CY68}		System cycle time (read) (write)		170 130	-	nS
t _{PWR68}	WR1	Pulse width (read)		85	_	nS
t _{PWW68}		Pulse width (write)		65	_	nS
t _{LPW68}		Low pulse width (read) (write)		85 65	1	nS
t _{DS68} t _{DH68}	D0~D7	Data setup time Data hold time		30 0	_	nS
t _{АСС68} t _{ОН68}		Read access time Output disable time	C _L = 100pF		70 30	nS
tcssa68 t _{csh68}	CS1/CS0	Chip select setup time Chip select hold time		5 5		nS

 $(1.65V \le V_{DD} \le 2.5V, Ta = -30 \text{ to } +85^{\circ}C)$

Symbol	Signal	Description	Condition	Min.	Max.	Units
t _{AS68} t _{AH68}	CD	Address setup time Address hold time		0	-	nS
t _{CY68}		System cycle time (read) (write)		320 270	-	nS
t _{PWR68}	WR1	Pulse width (read)		160	-	nS
t _{PWW68}		Pulse width (write)		135	=	nS
t _{LPW68}		Low pulse width (read) (write)		160 135	1	nS
t _{DS68} t _{DH68}	D0~D7	Data setup time Data hold time		60 0	-	nS
t _{ACC68} t _{OH68}		Read access time Output disable time	C _L = 100pF	-	120 60	nS
tcssa68 t _{csh68}	CS1/CS0	Chip select setup time Chip select hold time		10 10		nS

SPEC. REV.00 PAGE 14 OF 23

SERIAL INTERFACE BUS TIMING CHARACTERISTICS FOR S8 MODE

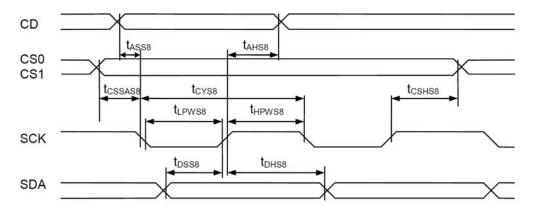


FIGURE 15: Serial Bus Timing Characteristics (for S8 / S8uc)

$$(2.5V \le V_{DD} < 3.3V, Ta = -30 \text{ to } +85^{\circ}C)$$

Symbol	Signal	Description	Condition	Min.	Max.	Units
t _{ASS8}	CD	Address setup time		0	_	nS
t _{AHS8}		Address hold time		0	(s <u>—</u>)	nS
t _{CYS8}		System cycle time		40	8 <u>—</u> 8	nS
t _{LPWS8}	SCK	Low pulse width		20	1.—11	nS
t _{HPWS8}		High pulse width		20	()	nS
t _{DSS8} t _{DHS8}	SDA	Data setup time Data disable time		15 0	1	nS
tcssas8 t _{cshs8}	CS1/CS0	Chip select setup time Chip select hold time		5 5		nS

$(1.65V \le V_{DD} \le 2.5V, Ta = -30 \text{ to } +85^{\circ}C)$

Symbol	Signal	Description	Condition	Min.	Max.	Units
t _{ASS8}	CD	Address setup time		0	-	nS
t _{AHS8}		Address hold time		0	32-33	nS
t _{CYS8}		System cycle time		75	_	nS
t _{LPWS8}	SCK	Low pulse width		37	33-03	nS
t _{HPWS8}		High pulse width		37	=	nS
t _{DSS8} t _{DHS8}	SDA	Data setup time Data disable time		30 0	1	nS
tcssas8 t _{CSHS8}	CS1/CS0	Chip select setup time Chip select hold time		10 10		nS

SPEC. REV.00 PAGE 15 OF 23

SERIAL INTERFACE BUS TIMING CHARACTERISTICS FOR 12C MODE

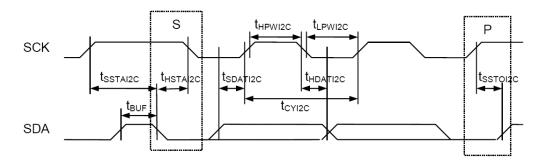


FIGURE 16: Serial bus timing characteristics (for I²C)

 $(2.5V \le V_{DD} < 3.3V, Ta = -30 \text{ to } +85^{\circ}C)$

Symbol	Signal	Description	Condition	Min.	Max.	Units
t _{CYI2C}		SCK cycle time (read) (write)	tr+tf ≤ 100nS	580 275	_	nS
t _{LPWI2C}	SCK	Low pulse width (read) (write)		290 165	-	nS
t _{HPWI2C}		High pulse width (read) (write)		290 110		nS
tr, tf		Rise time and fall time		-	_	nS
t _{SSDAI2C}		Data setup time		28	_	nS
t _{HDAI2C}		Data hold time		11	_	nS
t _{sstal2C}	SCK	START Setup time		28	_	nS
t _{HSTAI2C}	SDA	START Hold time		28	_	nS
t _{sstoi2} c		STOP setup time		28	_	nS
T _{BUF}		Bus Free time between STOP and START condition		165	_	nS

 $(1.65V \le V_{DD} \le 2.5V, Ta = -30 \text{ to } +85^{\circ}C)$

Symbol	Signal	Description	Condition	Min.	Max.	Units
t _{cYl2C}		SCK cycle time (read) (write)	tr+tf ≤ 100nS	750 330		nS
t _{LPWI2C}	SCK	Low pulse width (read) (write)		375 200	1	nS
t _{HPWI2C}		High pulse width (read) (write)		375 130		nS
tr, tf		Rise time and fall time		-	-	nS
t _{SSDAI2C}		Data setup time		55	_	nS
t _{HDAI2C}		Data hold time		11	_	nS
t _{sstal2C}	SCK	START Setup time		28	_	nS
t _{HSTAI2C}	SDA	START Hold time		60	_	nS
t _{sstol2} c		STOP setup time		28	_	nS
T _{BUF}		Bus Free time between STOP and START condition		220		nS

SPEC. REV.00 PAGE 16 OF 23

RESET TIMING DIAGRAM

FIGURE 17: Reset Characteristics

 $(1.65V \le V_{DD} < 3.3V, Ta = -30 \text{ to } +85^{\circ}C)$

Symbol	Signal	Description	Condition	Min.	Max.	Units
t _{RW}	RST	Reset low pulse width		3	-	μS
t _{RD}	RST, WR	Reset to WR pulse delay		10	-	mS

THE RESET CIRCUIT

RESET & POWER MANAGEMENT

TYPES OF RESET

UC1617w has two different types of Reset: Power-ON-Reset and System-Reset.

Power-ON-Reset is performed right after V_{DD} is connected to power. Power-On-Reset will first wait for about ~5mS, depending on the time required for V_{DD} to stabilize, and then trigger the System Reset.

System Reset can also be activated by software command or by connecting RST pin to ground.

In the following discussions, Reset means System Reset.

RESET STATUS

When UC1617w enters RESET sequence:

- · Operation mode will be "Reset"
- All control registers are reset to default values.
 Refer to Control Registers for details of their default values.

OPERATION MODES

UC1617w has three operating modes (OM): Reset, Normal, Sleep.

Mode	Reset	Sleep	Normal
OM	00	10	11
Host Interface	Active	Active	Active
Clock	OFF	OFF	ON
LCD Drivers	OFF	OFF	ON
Charge Pump	OFF	OFF	ON
Draining Circuit	ON	ON	OFF

Table 4: Operating Modes

CHANGING OPERATION MODE

In addition to Power-ON-Reset, two commands will initiate OM transitions:

Set Display Enable, and System Reset.

When DC[2] is modified by Set Display Enable, OM will be updated automatically. There is no other action required to enter Sleep Mode.

OM changes are synchronized with the edges of UC1617w internal clock. To ensure consistent system states, wait at least 10µS after Set Display Enable Of System Reset commands.

Action	Mode	OM
Reset command RST_ pin pulled "L" Power ON reset	Reset	00
Set Driver Enable to "0"	Sleep	10
Set Driver Enable to "1"	Normal	11

Table 5: OM changes

Both Reset mode and Sleep mode drain the charges stored in the external capacitors C_{B0} , C_{B1} , and C_L . When entering Reset mode or Sleep mode, the display drivers will be disabled.

The difference between Sleep mode and Reset mode is that, Reset mode clears all control registers and restores them to default values, while Sleep mode retains all the control registers values set by the user.

It is recommended to use Sleep Mode for Display OFF operations as UC1617w consumes very little energy in Sleep mode (typically under 2µA).

EXITING SLEEP MODE

UC1617w contains internal logic to check whether V_{LCD} and V_{BIAS} are ready before releasing COM and SEG drivers from their idle states. When exiting Sleep or Reset mode, COM and SEG drivers will not be activated until UC1617w internal voltage sources are restored to their proper values.

SPEC. REV.00 PAGE 17 OF 23

INITIALIZING WITHOUT THE BUILT-IN POWER SUPPLY CIRCUITS

POWER-UP SEQUENCE

UC1617w power-up sequence is simplified by builtin "Power Ready" flags and the automatic invocation of System-Reset command after Power-ON-Reset.

System programmers are only required to wait 150 mS before the CPU starting to issue commands to UC1617w. No additional time sequences are required between enabling the charge pump, turning on the display drivers, writing to RAM or any other commands. However, while turning on V_{DD}, V_{DD2/3} should be started not later than V_{DD}.

Delay allowance between V_{DD} and V_{DD2/3} is illustrated as Figure 12.

Turn on the power Set RST Low Wait ≥ 1mS Set RST High Wait for MTP-Read ≥ 150 mS Set LCD Bias Ratio (BR) Set Potential Meter (PM) Set Display Enable

POWER-DOWN SEQUENCE

To prevent the charge stored in capacitors C_{BX+} , C_{BX-} , and C_L from damaging the LCD, when V_{DD} is switched off, use Reset mode to enable the built-in draining circuit and discharge these capacitors.

The draining resistor is 1K Ohm for both V_{LCD} and V_{B+} . It is recommended to wait 3 x RC for V_{LCD} and 1.5 x RC for V_{B+} . For example, if C_L is 330nF, then the draining time required for V_{LCD} is 0.5~1mS.

When internal V_{LCD} is not used, UC1617w will *NOT* drain V_{LCD} during RESET. System designers need to make sure external V_{LCD} source is properly drained off before turning off V_{DD}.

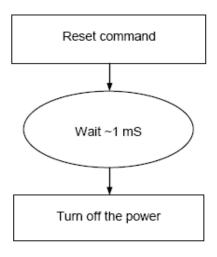


Figure 11: Reference Power-Down Sequence

Figure 10: Reference Power-Up Sequence

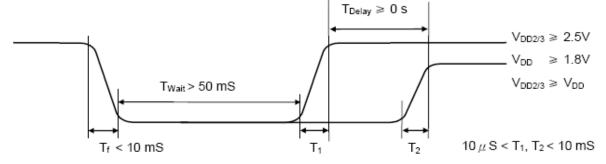


Figure 12: Delay allowance between V_{DD} and V_{DD23}

SPEC. REV.00 PAGE 18 OF 23

ELECTRO-OPTICAL CHARACTERISTICS

MEASURING CONDITION: POWER SUPPLY = VOP / 64 Hz

TEMPERATURE = 22 ± 5 °C RELATIVE HUMIDITY = 60 ± 15 %

ITEM	SYMBOL	UNIT	TYP. STN
RESPONSE TIME	Ton	ms	290
	Toff	ms	370
CONTRAST RATIO	Cr	-	9
	V3:00	0	40
VIEWING ANGLE	V6:00	0	60
(Cr ≥ 2)	V9:00	٥	40
	V12:00	0	40

THE ELECTRO-OPTICAL CHARACTERISTICS ARE MEASURED VALUE BUT NOT GUARANTEED ONES.

RELIABILITY OF LCD MODULE

	TEST CONDITION	TEST CONDITION	
ITEM	FOR NORMAL TEMPERATURE	FOR WIDE TEMPERATURE	TIME
High temperature operating	50°C	70°C	240 hours
Low temperature operating	0°C	-20°C	240 hours
High temperature storage	60°C	80°C	240 hours
Low temperature storage	-10°C	-30°C	240 hours
Temperature-humidity storage	40°C 90% R.H.	60°C 90% R.H.	96 hours
Temperature cycling	-10°C to 60°C	-30°C to 80°C	<i>5</i>
	30 Min Dwell	30 Min Dwell	5 cycle
Vibration Test at LCM Level	Freq 10-55 Hz	Freq 10-55 Hz	
	Sweep rate: 10-55-10 at 1 min	Sweep rate: 10-55-10 at 1 min	
	Sweep mode Linear	Sweep mode Linear	_
	Displacement: 2 mm p-p	Displacement: 2 mm p-p	
	1 Hour each for X, Y, Z	1 Hour each for X, Y, Z	

SPEC. REV.00 PAGE 19 OF 23

QUALITY STANDARD OF LCD MODULE

1.0								
	Sampling Plan : MIL STD 105 E Class of AQL : Level II/Single Sampling							
	Critical: 0.25% Majo							
2.0	Defect Group	Failure Category	Failure Reasons					
	Critical Defect	Malfunction	Open					
	0.25%(AQL)		Short					
			Burnt or dead component					
			Missing part/improper part P.C.B.					
			Broken					
	Major Defect	Poor Insulation	Potential short					
	0.65%(AQL)		High current					
			Component damage or scratched					
			or Lying too close improper coating					
		Poor Conduction	Damage joint					
			Wrong polarity					
			Wrong spec. part					
			Uneven/intermittent contact					
			Loose part					
			Copper peeling					
			Rust or corrosion or dirt's					
	Minor Defect	Cosmetic Defect	Minor scratch					
	1.5%(AQL)		Flux residue					
			Thin solder					
			Poor plating					
			Poor marking					
			Crack solder					
			Poor bending					
			Poor packing					
			Wrong size					

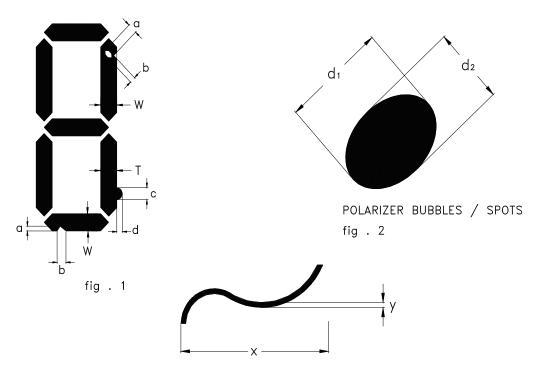
SPEC. REV.00 PAGE 20 OF 23

SAMPLING METHOD

SAMPLING PLAN: MIL-STD 105E

CLASS OF AQL: LEVEL II/ SINGLE SAMPLING

MAJOR-0.65% MINOR – 1.5%

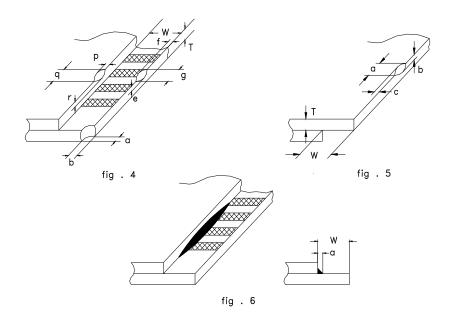

QUALITY STANDARD

DEFECT	CRITERIA		ТҮРЕ	FIGURE
SHORT CIRCUIT	-		MAJOR	-
MISSING SEGMENT	-		MAJOR	-
UNEVEN / POOR CONTRAST	-		MAJOR	-
CROSS TALK	-		MAJOR	-
PIN HOLE	$MAX(a,b) \le 1/4 W$		MINOR	1
EXCESS SEGMENT	$MAX(c,d) \leq$	1 / 4 T	MINOR	1
BUBBLES	d* ≥ 0.2	QTY=0	MINOR	2
BLACKS SPOTS	d ≤ 0.3	N.A.**	MINOR	2
	0.3 <d≤0.4< td=""><td>QTY≤1</td><td></td><td></td></d≤0.4<>	QTY≤1		
	0.4 <d< td=""><td>QTY=0</td><td></td><td></td></d<>	QTY=0		
LINE SCRATCHES	x≥0.7 y≥0.05	QTY=0	MINOR	3
BLACK LINE	x≥0.7 y≥0.05	QTY=0	MINOR	3

* $d = MAX(d_1,d_2)$

** N. A . = NOT APPLICABLE

DEFECT TABLE : B


LINE SCRATCHES / BLACK LINE fig . 3

$\ \, \textbf{QUALITY STANDARD} \, (\, \textbf{CONT.})$

DEFECT		CRITERIA	ТҮРЕ	FIGURE
	CONTACT EDGE	e≤1/2T f≤1/3W g≤3.5		4
CHIPS	BOTTOM GLASS	p≤1.0 q≤3.5 r≤1/2T	MINOR	4
	CORNER	a≤1.5 b≤W		4
	TOP GLASS	a≤3.0 b≤1/3T c≤1/2W		5
GLASS PROTRUSION		$a \le 1/4 \text{ W}$	MINOR	6
RAINBOW		-	MINOR	-

UNLESS STATE OTHERWISE , ALL UNIT ARE IN MILLIMETER .

DEFECT TABLE : B

SPEC. REV.00 PAGE 22 OF 23

HANDLING PRECAUTIONS

(1) CAUTION OF LCD HANDLING & CLEANING

Use soft cloth with solvent (recommended below) to clean the display surface and wipe lightly.

- Isopropyl alcohol, ethyl alcohol, trichlorotriflorothane

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface. Do not use the following solvent;

-water, ketone, aromatics

(2) CAUTION AGAINST STATIC CHARGE

The LCD modules use CMOS LSI drivers, so customers are recommend that any unused input terminal would be connected to V_{DD} or V_{SS} , do not input any signals before power is turned on, and ground your body, work/assembly areas, assembly equipment to protect against static electricity.

Remove the protective film slowly and, if possible, under ESD control device like ion blower and humidity of working room should be kept over 50%RH to reduce risk of static charge.

(3) PACKAGING

Avoid intense shock and falls from a height and do not operate or store them exposed direct to sunshine or high temperature/humidity.

(4) CAUTION FOR OPERATION

It is an indispensable condition to drive LCD's within the specified voltage limit since the higher voltage than the limit causes the shorter LCD life. The use of direct current drive should be avoided because an electrochemical reaction due to direct current causes LCD's undesirable deterioration.

Response time will be extremely delayed at low temperature, and LCD's show dark color at high temperature. However those phenomena do not mean malfunction or out of order with LCD's.

Some font will be abnormally displayed when the display area is pushed hard during operation. But it resumes normal condition after turning off once.

(5) SOLDERING (for Pin type)

It is recommended to complete dip soldering at 270 °C or hand soldering at 280 °C within 3 seconds. The soldering position is at least 3mm apart from the pin head. Wave or reflow soldering are not recommended. Metal pins should not be soldered for more than 3 times and each soldering should be done after cool down of metal pins

(6) SAFETY

For crash damaged or unnecessary LCD's, it is recommended to wash off liquid crystal by either of solvents such as acetone and ethanol and should be burned up later.

When any liquid leaked out of a damaged glass cell comes in contact with your hands, wash it off with soap and water.

WARRANTY

CLOVER will replace or repair any of her LCD module in accordance with her LCD specification for a period of one year from date of shipment. The warranty liability of Clover is limited to repair and/or replacement. Clover will not be responsible for any subsequent or consequential event.

SPEC. REV.00 PAGE 23 OF 23